Efficient and compact frequency converters are essential for frequency stabilization of terahertz sources. In this paper, we present a 3.5-THz, ×6-harmonic, integrated Schottky diode mixer operating at room temperature. The designed frequency converter is based on a single-ended, planar Schottky diode with a sub-micron anode contact area defined on a suspended 2-µm ultra-thin GaAs substrate. The dc-grounded anode pad was combined with the radio frequency E-plane probe, which resulted in an electrically compact circuit. At 200 MHz intermediate frequency, a mixer conversion loss of about 59 dB is measured resulting in a 40 dB signal-to-noise ratio for phase locking a 3.5-THz quantum-cascade laser. Using a quasi-static diode model combined with electromagnetic simulations, good agreement with the measured results was obtained. Harmonic frequency converters without the need of cryogenic cooling will help in the realization of highly sensitive space and air-borne heterodyne receivers.
Efficient and reliable frequency converters, preferably operating at room temperature, are critical components for frequency-stabilizing terahertz sources. In this work, we present the analysis of optimum configurations for Schottky diode based x4, x6, and x8 harmonic mixers operating at 2.3 THz, 3.5 THz, and 4.7 THz respectively. Detailed large-signal analysis of the two basic single-ended Z-and Y-mixers was carried out using a standard Schottkydiode model. For each case, the conversion loss was minimized by finding optimal embedding impedances at RF, LO, and IF frequencies. The analysis shows that the Y-mixer has less conversion loss at a low LO pump power. However, the Zmixer provides reduced loss with increasing harmonic index and pump power due to the associated power dissipation in idler circuits. The results provide preliminary design guidelines for room-temperature frequency converters and their use in phase-locked loop applications.
Human skin phantoms are essential to enable fast, label-free, and reliable testing of pharmaceutical and cosmetic products. We report the characterisation of polyvinyl alcohol-based hydrogel phantoms along with in-vivo skin measurements of three volunteers from 0.2 to 1 THz. The results indicate that frequency-dependent properties of hydrogel phantoms are similar to human skin and show promising prospects of being utilised as a skin equivalent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.