BackgroundPeste des petits ruminants (PPR) is a contagious disease listed by the World Organisation for Animal health (OIE) as being a specific hazard. It affects sheep, goats, and wild ungulates, and is prevalent throughout the developing world particularly Asia, the Middle East, and Africa. PPR has been targeted for eradication by 2030 by the Food and Agriculture Organization of the United Nations (FAO) and the OIE, after the successful eradication of the related disease, rinderpest in cattle. PPR was first reported in 1942 in the Ivory Coast in Western Africa and has since extended its range in Asia, the Middle East, and Africa posing an immediate threat of incursion into Europe, South East Asia and South Africa. Although robust vaccines are available, the use of these vaccines in a systematic and rational manner is not widespread, resulting in this devastating disease becoming an important neglected tropical disease in the developing world.MethodologyWe isolated and characterized the PPR virus from an outbreak in Cheraga, northern Algeria, during October 2015 by analyzing the partial N-gene sequence in comparison with other viruses from the Maghreb region. As well as sequencing the full length viral genome and performing real-time RT-PCR on clinical samples. Maximum-likelihood and Bayesian temporal and phylogeographic analyses were performed to assess the persistence and spread of PPRV circulation from Eastern Africa in the Maghreb region of North Africa.ConclusionsRecent PPR outbreaks in Cheraga, in the northern part of Algiers (October 2015) and North-West Morocco (June, 2015) highlight that PPRV has spread to the northern border of North Africa and may pose a threat of introduction to Europe. Phylogeographic analysis suggests that lineage IV PPRV has spread from Eastern Africa, most likely from the Sudan 2000 outbreak, into Northern Africa resulting in the 2008 Moroccan outbreak. Maximum-likelihood and Bayesian analysis shows that these North African viruses cluster closely together suggesting the existence of continual regional circulation. Considering the same virus is circulating in Algeria, Morocco and Tunisia, implementation of a common Maghreb PPR eradication strategy would be beneficial for the region.
BackgroundLittle is known on the occurrence and identity of Cryptosporidium species in sheep and goats in Algeria. This study aimed at investigating the occurrence of Cryptosporidium species in lambs and goat kids younger than 4 weeks.MethodsA total of 154 fecal samples (62 from lambs and 92 from kid goats) were collected from 13 sheep flocks in Médea, Algeria and 18 goat flocks across Algiers and Boumerdes. They were screened for Cryptosporidium spp. by nested-PCR analysis of a fragment of the small subunit (SSU) rRNA gene, followed by restriction fragment length polymorphism and sequence analyses to determine the Cryptosporidium species present. Cryptosporidium parvum and C. ubiquitum were further subtyped by sequence analysis of the 60 kDa glycoprotein gene.ResultsCryptosporidium spp. were detected in 17 fecal samples (11.0%): 9 from lambs (14.5%) and 8 from goat kids (8.7%). The species identified included C. parvum in 3 lambs, C. xiaoi in 6 lambs and 6 goat kids, and C. ubiquitum in 2 goat kids. Cryptosporidium infections were detected mostly in animals during the first two weeks of life (7/8 for goat kids and 7/9 for lambs) and in association with diarrhea occurrence (7/17 or 41.2% goat kids and 7/10 or 70.0% lambs with diarrhea were positive for Cryptosporidium spp.). Subtyping of C. parvum and C. ubiquitum isolates identified the zoonotic IIaA13G2R1 and XIIa subtype families, respectively. Minor differences in the SSU rRNA gene sequences were observed between C. xiaoi from sheep and goats.ConclusionsResults of this study indicate that three Cryptosporidium species occur in lambs and goat kids in Algeria, including zoonotic C. parvum and C. ubiquitum. They are associated with the occurrence of neonatal diarrhea.
Query (Q) fever is a globally distributed zoonotic disease caused by Coxiella burnetii, a bacterial agent for which ruminants are the most prevalent natural reservoir. Data regarding Q fever infection in camels in Algeria are limited. Therefore, a survey to detect seroprevalence of C. burnetii antibodies was conducted among healthy camel populations in a vast area in southeastern Algeria to determine distribution of the Q fever causative organism and to identify risk factors associated with infection. Between January and March 2016, blood samples were collected from 184 camels and serum samples were subsequently analysed using a commercial Enzyme-Linked Immunosorbent Assay (ELISA) kit. At the time of blood collection, a questionnaire investigating 13 potential predisposing factors associated with C. burnetii seropositivity was completed for every dromedary camel and herd. Results were analysed by a chi-square (χ2) test and multivariate logistic regression. The seroprevalence of C. burnetii at the animal level was 71.2% (95% CI: 65.2–78.3) and 85.3% (95% CI: 72.8–97.8) at the herd level. At the animal level, differences in seroprevalence were observed because of herd size, animal age, animal sex, presence of ticks and contact with other herds. A multivariable logistic regression model identified three main risk factors associated with individual seropositivity: (1) age class > 11 years (OR = 8.81, 95% CI: 2.55–30.41), (2) herd size > 50 head (OR = 4.46, 95% CI: 1.01–19.59) and (3) infestation with ticks (OR 2.2; 95% CI: 1.1–4.5). This study of seroprevalence of C. burnetii infection in camels in Algeria revealed a high seroprevalence of Q fever in camel populations in southeastern Algeria and provided strong evidence that Q fever represents an economic, public health and veterinary concern. Appropriate measures should be taken to prevent the spread of C. burnetii and to reduce the risk of Q fever in farm animals and humans in this agro-ecologically and strategically important region of North Africa.
The present study was carried out to determine the prevalence of subclinical mastitis in cattle in eighteen herds in the center region of Algeria. Milk samples were collected from 560 quarters of 140 cows free of clinical mastitis. The samples were subjected to California Mastitis Test (CMT) and the positive samples were analysed by bacteriological culture and Speed Mam® Color. The overall quarter prevalence was 28.77% whilst animal prevalence was 28.57%.Bacteriological analysis showed that there was a wide range of bacteria that cause these infections. Staphylococcus aureus (40%) was found to be the most prevalent organism followed by Streptococcus spp. (12.5%), Enterobacteriaceae (2.5%), Pseudomonas spp. (2.5%), Staphylococcus aureus + Streptococcus spp. (12.5%), Streptococcus spp.+ Escherichia coli (7.5%), S. aureus + Mycoplasma spp.(7.5%), and S. aureus +Streptococcus spp.+ E. coli (5%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.