A weighted Gaussian approximation to tail product-limit process for Pareto-like distributions of randomly right-truncated data is provided and a new consistent and asymptotically normal estimator of the extreme value index is derived. A simulation study is carried out to evaluate the finite sample behavior of the proposed estimator.
We make use of the empirical process theory to approximate the adapted Hill estimator, for censored data, in terms of Gaussian processes. Then, we derive its asymptotic normality, only under the usual second-order condition of regular variation. Our methodology allows to relax the assumptions, made in Einmahl et al.
-functionals summarize numerous statistical parameters and actuarial risk measures. Their sample estimators are linear combinations of order statistics (-statistics). There exists a class of heavy-tailed distributions for which the asymptotic normality of these estimators cannot be obtained by classical results. In this paper we propose, by means of extreme value theory, alternative estimators for -functionals and establish their asymptotic normality. Our results may be applied to estimate the trimmed -moments and financial risk measures for heavy-tailed distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.