Reaktor Daya Eksperimental (RDE) is an experimental power reactor based on High Temperature Gas-cooled Reactor (HTGR) technology with thermal power of 10 MW. As an experimental power reactor, RDE is designed for electricity generation and provides thermal energy for experimental purposes. RDE energy conversion system is designed with cogeneration configuration in the Rankine cycle. To ensure the effectiveness of its cogeneration, the outlet temperature of the RDE is set at 700°C and steam generator outlet temperature is around 530°C. Analysis of the performance of the energy conversion system in various power levels is needed to determine the RDE operating conditions. This research is aimed to study the performance characteristics of RDE energy conversion systems in various reactor power conditions. The analysis was carried out by simulating thermodynamic parameter calculations on the RDE energy conversion system and the overall cooling system using the ChemCad program package. The simulation is carried out by increasing the reactor power from 0 MW to 10 MW at constant pressure and constant mass flow rate. The simulation results show that the steam fraction at the steam generator outlet increases starting from 3 MW reactor power and reaches saturated steam after the thermal power level of 7.5 MW. From the results, it can be concluded that with constant mass flow rate and operating pressure, optimal turbine power is obtained after the reactor thermal power reached 7.5 MW.
This paper reviews the application of a nuclear hydrogen cogeneration system (NHCS) for conversion of carbon dioxide (CO2) to urea fertilizer. The NHCS is powered by high temperature gas cooled reactor (HTGR)with 2x600 MWt which is sufficient to produce hydrogen and heat energy to convert CO2 from coal-fired power plants with a power of 90 MWe to urea fertilizer of 1725 tons per day. As a source CO2, a coal-fired power plant is built near NHCS. Compared to conventional fertilizer plant, the NHCS application can save natural gas by 21.25x106 MMBTU/year, with a potential reduction in CO2 emission rate of 1.66x106 tons/year. Besides, there is still nuclear heat remaining at about 425.65 MWt which is equivalent to 140.46 MWe of electricity, and 90 MWe of electricity from coal-fired power plants that can be connected to electric grid. The paper also discusses the significance of the combination of NHCS and the technology of CO2 conversion which is expected to play an important role in the industry in the future as an environmentally friendly approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.