This paper presents a novel and efficient optimization approach based on the Artificial Ecosystem Optimization (AEO) algorithm to solve the problem of finding optimal location and sizing of Distributed Generation (DGs) in radial distribution systems. The objective is to satisfy a fluctuating demand in a constant and instantaneous way while respecting the requirements of power loss reduction, operating cost minimization and voltage profile improvement within the equality and inequality constraints. The robustness of the proposed technique in terms of solution quality and convergence characteristics is evaluated using the IEEE-33 bus radial distribution network test system. The simulation results are compared with those of other methods recently used in the literature for the same test system. The experimental outcomes show that the proposed AEO approach is comparatively able to achieve a higher quality solution within a timeliness of computation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.