The goal of the current study was to establish and authenticate an isocratic reverse-stage High-Performance Liquid Chromatography (HPLC) method for quantifying ketotifen fumarate (KF) in pharmaceutical liquid dosage compositions. Easy, quick, accurate, exact, and accurate reverse-stage high-performance liquid chromatography was advanced for the simultaneous assessment of ketotifen fumarate in the liquid syrup dosage type. The HPLC system using isocratic elution method with reverse-phase Inertsil ODS-(250 mm × 4.6 mm, 3 μm) column was detected by ultraviolet absorbance at 297 nm with no interference from widely using excipients, the mobile phase (A) is a mixture of triethylamine and water (175 μl in 500 ml of water), and the mobile phase (B) is a mixture of triethylamine and methanol (175 μl in 500 ml of methanol) at a flow rate of 1.5 mL/min (mobile phase A 40 %:mobile phase B 60%) at column temperature using 40 ° C, the retention time for ketotifen fumarate was 6.4±0.5 min. The concentration curves were linear in the range of 10.0 to 35.0 μg / ml (R2 = 0.9999). The developed method was tested for the specificity, precision, linearity, precision, reliability, robustness, and consistency of the solution. The regeneration of ketotifen fumarate in formulations was found to be 99.75 %, 99.91 %, and 100.05 % respectively. The percent RSD for percent recovery was found to be 0.21 and 0.17 and 0.10 for ketotifen fumarate. In the conclusion, the suggested technique was successfully used for the quantitative determination of ketotifen fumarate in formulations.
Montelukast sodium is well known pharmaceutically for its action as leukotriene antagonist and reliving symptoms associated with asthma is available in the market as tablet, chewable tablet, and powder. The aim of this study was to develop newly simple selective ultraviolet spectrophotometry (UV) method for daily routine analysis of quality control department. The UV method was developed with wavelength at 287.0 nm. This newly developed method was effectively applied to tablet dosage form of the motelukast sodium follow the Beer’s Lamberts at range 2.5–50 μg/mL. The validated parameters were carryout such as linearity, accuracy, precision, and specificity. The result of validation statistically studied and found to be satisfactory.
In the current investigation, a number of chromatographic methods with the accurate, precise and specific criteria have been developed and validated for diclofenac sodium and lidocaine hydrochloride Commitment of their large quantities ampule of pharmaceutical dosage form. The High-Performance Liquid Chromatography (HPLC) system was performed at 25 ° C; with appropriate chromatographic isolation accomplished through the use of Waters Symmetry SB-C7 column with a mobile phase containing 0.1 M sodium acetate and methanol (40:60) (v/v). During development the portable stage was delivered at a stream rate of 1 mL/min, the wavelength was adjusted at 254 nm. First of all, the retention times for diclofenac sodium and lidocaine HCl were about 4.1 and 10.8 min accordingly. A performance and technical demonstration of the suggested Revers phase-HPLC method has been numerically challenged with support to process appropriateness, verticality, scales, simplicity, repeatability, sensitivity, stability, discovery and limits of quantification. In addition, the calibration curves for diclofenac sodium active pharmaceutical ingredient (API) with linear regressions > 0,999895 obtained linear in the distances 1870-5600 μg / mL. Moreover, for determining of lidocaine HCl drug, a range of 500 - 1500 μg/mL of working standard was used, the result showed for lidocain HCl that a linear curve with correlation coefficients of > 0.99980. Finally, the both drugs were isolated and resolute with selective and stable characteristics by the proposed technique. In the conclusion, successful validation of the HPLC approach has been demonstrated with high precision and accuracy for the assessment of both the mixed dosage form type of both diclofenac sodium and lidocaine HCl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.