We previously demonstrated that protection induced by radiation-attenuated (γ) Plasmodium berghei sporozoites is linked to MHC class I-restricted CD8+ T cells specific for exoerythrocytic-stage Ags, and that activated intrahepatic memory CD8+ T cells are associated with protracted protection. In this study, we further investigated intrahepatic memory CD8+ T cells to elucidate mechanisms required for their maintenance. Using phenotypic markers indicative of activation (CD44, CD45RB), migration (CD62L), and IFN-γ production, we identified two subsets of intrahepatic memory CD8+ T cells: the CD44highCD45RBlowCD62LlowCD122low phenotype, representing the dominant effector memory set, and the CD44highCD45RBhighCD62Llow/highCD122high phenotype, representing the central memory set. Only the effector memory CD8+ T cells responded swiftly to sporozoite challenge by producing sustained IFN-γ; the central memory T cells responded with delay, and the IFN-γ reactivity was short-lived. In addition, the subsets of liver memory CD8+ T cells segregated according to the expression of CD122 (IL-15R) in that only the central memory CD8+ T cells were CD122high, whereas the effector memory CD8+ T cells were CD122low. Moreover, the effector memory CD8+ T cells declined as protection waned in mice treated with primaquine, a drug that interferes with the formation of liver-stage Ags. We propose that protracted protection induced by P. berghei radiation-attenuated sporozoites depends in part on a network of interactive liver memory CD8+ T cell subsets, each representing a different phase of activation or differentiation, and the balance of which is profoundly affected by the repository of liver-stage Ag and IL-15.
Multi-factorial immune mechanisms underlie protection induced with radiationattenuated Plasmodia sporozoites (c-spz). Spz pass through Kupffer cells (KC) before invading hepatocytes but the involvement of KC in protection is poorly understood. In this study we investigated whether c-spz-immune KC respond to infectious spz in a manner that is distinct from the response of naive KC to infectious spz. KC were isolated from (1) naive, (2) spz-infected, (3) c-spz-immune, and (4) c-spz-immune-challenged C57BL/6 mice and examined for the expression of MHC class I and II, CD40 and CD80/CD86, IL-10 and IL-12 responses and antigen-presenting cell (APC) function. KC from c-spz-immune-challenged mice up-regulated class I and costimulatory molecules and produced elevated IL-12p40, relative to naive KC. In contrast, KC from naive mice exposed to infectious spz down-modulated class I and IL-12p40 was undetectable. Accordingly, KC from spz-infected mice had reduced APC function, while KC from c-spz-immune-challenged mice exhibited augmented APC activity. The nearly opposite responses are consistent with the fact that spz challenge of c-spz-immune mice results in long-lasting sterile protection, while infection of naive mice always results in malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.