Storm surges and wind waves are ones of the most important hydrological characteristics, which determine dynamics of the Sea of Azov. Extreme storm surges in Taganrog Bay and flooding in the Don Delta can be formed under the effect of strong western winds. In this work the sea level oscillations and wind waves in the Taganrog Bay were simulated by means of the coupled SWAN+ADCIRC numerical model, taking into account the flooding and drying mechanisms. The calculations were carried out on an unstructured mesh with high resolution. The wind and atmospheric pressure fields for the extreme storm from 20 to 28 of September, 2014 obtained from WRF regional atmospheric model were used as forcing. The analysis of simulation results showed the following. The western and northern parts of the Don Delta were the most flood-prone during the storm. The size of the flooded area of the Don Delta exceeded 50%. Interaction of storm surge and wind wave accelerated the flooding process, increased the size of the flooded area and led to the intensification of wind waves in the upper of Taganrog Bay due to the general rise of the sea level.
Studies of shape dynamics of the Bakalskaya Spit based on observation and numerical simulation are carries out. The Bakalskaya Spit is a dynamically active sand formation on the north-west coast of the Crimea Peninsula. Field observations and satellite image analyses showed that the erosion of spit west coast, eastward displacement of spit distal part and separation of distal part from the spit main part are the most significant processes. After the autumn storms in 2010 the isthmus between the distal part of spit and its main part was eroded and had not recovered till now. So the distal part of the Bakalskaya Spit turned into island. Dynamic of sediments depends on wind wave parameters and sea level oscillations. Effect of changing of wind wave direction and storm surge height on erosion and deposition processes in the Bakalskaya Spit region of the Black Sea is studied by using of XBeach numerical model. Dependencies of location and space dimension of erosion and deposition areas of sediments on characteristics of waves and surges are obtained. It is found that the most intensive erosion of spit isthmus occurs in case of wave running from the west in comparison of cases of wave running from the south-west and north-west if there are no surges. Presence of surges may results in increasing or decreasing of erosion process intensiveness depending on wave direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.