Strongly consistent and asymptotically normal estimators of the Hurst index and volatility parameters of solutions of stochastic differential equations with polynomial drift are proposed. The estimators are based on discrete observations of the underlying processes.
Let X be a solution of a stochasti Let X be a solution of a stochastic integral equation driven by a fractional Brownian motion BH and let Vn(X, 2) = \sumn k=1(\DeltakX)2, where \DeltakX = X( k+1/n ) - X(k/n ). We study the
ditions n2H-1Vn(X, 2) convergence almost surely as n → ∞ holds. This fact is used to obtain a strongly consistent estimator of the Hurst index H, 1/2 < H < 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.