Electronic properties of phosphorus donors in hydrogenated silicon nanocrystals are investigated using a real-space ab initio pseudopotential method for systems with up to 500 atoms. We present calculations for the ionization energy, binding energy, and electron density associated with the doped nanocrystal. We find that the ionization energy for the nanocrystal is virtually independent of size. This behavior may be attributed to localization of the electron around the impurity site owing to a large electron-impurity interaction within confined systems. In contrast to this result, the calculated hyperfine splitting exhibits a strong size dependence. For small nanocrystals it greatly exceeds the bulk value. This finding agrees with recent experimental measurements.
The resistive-pulse technique has been used to detect and size objects which pass through a single pore. The amplitude of the ion current change observed when a particle is in the pore is correlated with the particle volume. Up to date, however, the resistive-pulse approach has not been able to distinguish between objects of similar volume but different shapes. In this manuscript, we propose using pores with longitudinal irregularities as a sensitive tool capable of distinguishing spherical and rod-shaped particles with different lengths. The ion current modulations within resulting resistive pulses carry information on the length of passing objects. The performed experiments also indicate the rods rotate while translocating, and displace an effective volume that is larger than their geometrical volume, and which also depends on the pore diameter.
We explore the possibility of using thin layered semiconductor membranes for electrical control of the ion current flow through a nanopore, thereby operating like tunable ionic transistors. While single layer semiconductor membranes can be voltage tuned to operate as ionic filters or "switches", double layered membranes can rectify the ion current flowing through the nanopore in addition to ion filtering. Triple layer membranes exhibit enhanced functionality with characteristics similar to those of the single and double layer membranes in addition to bidirectional current blocking and switching, thereby operating similar to tunable ionic transistors.
We theoretically study how the electro-osmotic fluid velocity in a charged cylindrical nanopore in a thin solid state membrane depends on the pore's geometry, membrane charge, and electrolyte concentration. We find that when the pore's length is comparable to its diameter, the velocity profile develops a concave shape with a minimum along the pore axis unlike the situation in very long nanopores with a maximum velocity along the central pore axis. This effect is attributed to the induced pressure along the nanopore axis due to the fluid flow expansion and contraction near the exit or entrance to the pore and to the reduction of electric field inside the nanopore. The induced pressure is maximal when the pore's length is about equal to its diameter while decreasing for both longer and shorter nanopores. A model for the fluid velocity incorporating these effects is developed and shown to be in a good agreement with numerically computed results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.