Solar flares often happen after a preflare / preheating phase, which is almost or entirely thermal. In contrast, there are the so-called early impulsive flares that do not show a (significant) preflare heating but instead often show the Neupert effect-a relationship where the impulsive phase is followed by a gradual, cumulative-like, thermal response. This has been interpreted as a dominance of nonthermal energy release at the impulsive phase, even though a similar phenomenology is expected if the thermal and nonthermal energies are released in comparable amounts at the impulsive phase. Nevertheless, some flares do show a good quantitative correspondence between the nonthermal electron energy input and plasma heating; in such cases the thermal response was weak, which results in calling them "cold" flares. We undertook a systematic search of such events among early impulsive flares registered by Konus-Wind instrument in the triggered mode from 11/1994 to 04/2017 and selected 27 cold flares based on relationships between HXR (Konus-Wind ) and SXR (GOES) emission. For these events we put together all available microwave data from different instruments. We obtained temporal and spectral parameters of HXR and microwave emissions of the events and examined correlations between them. We found that, compared with a 'mean' flare, the cold flares: (i) are weaker, shorter, and harder in the X-ray domain; (ii) are harder and shorter, but not weaker in the microwaves; (iii) have a significantly higher spectral peak frequencies in the microwaves. We discuss the possible physical reasons for these distinctions and implication of the finding.
The first 48-antenna stage of the Siberian Radioheliograph (SRH) started single-frequency test observations early in 2016, and since August 2016 it routinely observes the Sun at several frequencies in the 4-8 GHz range with an angular resolution of 1-2 arc minutes and an imaging interval of about 12 seconds. With limited opportunities of the incomplete antenna configuration, a high sensitivity of about 100 Jy allows the SRH to contribute to the studies of eruptive phenomena along three lines. First, some eruptions are directly visible in SRH images. Second, some small eruptions are detectable even without a detailed imaging information from microwave depressions caused by screening the background emission by cool erupted plasma. Third, SRH observations reveal new aspects of some events to be studied with different instruments. We focus on an eruptive C2.2 flare on 16 March 2016 around 06:40, one of the first flares observed by the SRH. Proceeding from SRH observations, we analyze this event using extreme-ultraviolet, hard X-ray, white-light, and metric radio data. An eruptive prominence expanded, brightened, and twisted, which indicates a time-extended process of the flux-rope formation together with the development of a large coronal mass ejection (CME). The observations rule out a passive role of the prominence in the CME formation. The abrupt prominence eruption impulsively excited a blast-wave-like shock, which appeared during the microwave burst and was manifested in an "EUV wave" and Type II radio burst. The shock wave decayed and did not transform into a bow shock because of the low speed of the CME. Nevertheless, this event produced a clear proton enhancement near Earth. Comparison with our previous studies of several events confirms that the impulsive-piston shock-excitation scenario is typical of various events.
The analysis of narrowband drifting of type III-like structures in radio bursts dynamic spectra allows to obtain unique information about primary energy release mechanisms in solar flares. The SSRT spatially resolved images and a high spectral and temporal resolution allow direct determination not only the positions of its sources but also the exciter velocities along the flare loop. Practically, such measurements are possible during some special time intervals when the SSRT (about 5.7 GHz) is observing the flare region in two high-order fringes; thus, two 1D scans are recorded simultaneously at two frequency bands. The analysis of type III-like bursts recorded during the flare 14 Apr 2002 is presented. Using-muliwavelength radio observations recorded by SSRT, SBRS, NoRP, RSTN we study an event with series of several tens of drifting microwave pulses with drift rates in the range from -7 to 13 GHz s −1 . The sources of the fast-drifting bursts were located near the top of the flare loop in a volume of a few Mm in size. The slow drift of the exciters along the flare loop suggests a high pitch-anisotropy of the emitting electrons.
Regular observations of active processes in the solar atmosphere have been started using the first stage of the multiwave Siberian Radioheliograph (SRH), a T-shaped 48-antenna array with a 4–8 GHz operating frequency range and a 10 MHz instantaneous receiving band. Antennas are mounted on the central antenna posts of the Siberian Solar Radio Telescope. The maximum baseline is 107.4 m, and the angular resolution is up to 70". We present examples of observations of the solar disk at different frequencies, “negative” bursts, and solar flares. The sensitivity to compact sources reaches 0.01 solar flux units (≈10^{-4} of the total solar flux) with an accumulation time of about 0.3 s. The high sensitivity of SRH enables monitoring of solar activity and allows studying active processes from characteristics of their microwave emission, including faint events, which could not be detected previously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.