В статье построена и исследована математическая модели малых колебаний аэродинамического маятника в потоке движущейся среды. В качестве модели воздействия среды на тело принята модель квазистатического обтекания пластинки средой. Согласно этой гипотезе, аэродинамические силы, действующие на тело, прикладываются в центре давления. В нашей задаче центр давления является подвижным относительно пластинки. Получены уравнения движения для рассматриваемого тела. Проведен переход к новым безразмерным переменным. Показано нарушение единственности при определении угла атаки. Проведен параметрический анализ областей неоднозначности. Найдены все стационарные точки, являющиеся решениями уравнений равновесия. Показано, что в наиболее характерном положении равновесия, соответствующем состоянию покоя областей неоднозначности нет. Проведено исследование устойчивости различных нетривиальных положения равновесия, в которых реализован критерий Гурвица и изображены области устойчивости. Показано, что силы аэродинамического воздействия для тел с одними формами могут способствовать развитию автоколебаний, а для других затуханию. В математическом пакете MATLAB 18 написан комплекс программ, позволяющий находить стационарные точки, строить области устойчивости для каждой из них и проводить численное интегрирование уравнений, описывающих колебания тела, для того, чтобы подтвердить адекватность построенной математической модели. In the article, a mathematical model of small oscillations of an aerodynamic pendulum in the flow of a moving medium is constructed and investigated. As a model of the effect of the medium on the body, the model of quasi-static flow around the plate by the medium is adopted. According to this hypothesis, the aerodynamic forces acting on the body are applied at the center of pressure. In our problem, the pressure center is movable relative to the plate. The equations of motion for the body under consideration are obtained. The transition to new dimensionless variables has been carried out. The violation of uniqueness in determining the angle of attack is shown. The parametric analysis of the ambiguity areas is carried out. All stationary points that are solutions of the equilibrium equations are found. It is shown that there is no ambiguity in the most characteristic equilibrium position corresponding to the state of rest. A study of the stability of various non-trivial equilibrium positions in which the Hurwitz criterion is implemented, and the stability regions are depicted is carried out. It is shown that the forces of aerodynamic action for bodies with some shapes can contribute to the development of self-oscillations, and for others to attenuation. The mathematical package MATLAB 18 contains a set of programs that allows you to find stationary points, build stability regions for each of them and perform numerical integration of equations describing body vibrations in order to confirm the adequacy of the constructed mathematical model.
To increase the traction properties of a wheeled power vehicle, one of the classic solutions is to implement the entire weight load that falls on its propellers. The most rational and applied method in tractor construction is the 4K4 wheel formula, which allows the maximum weight of the tractor to be realized in the coupling. This is especially true when performing transport work in conditions where the implementation of traction properties largely depends on the condition of the base on which the movement takes place. When moving a transport unit on a horizontal surface, various additional methods of increasing traction properties are also known and widely used, often used of which are the installation of additional loads and increasing the contact area of the mover with the base on which the power vehicle moves (twin wheels, half-track, etc.). At the same time, when performing transport operations on roads with a significant longitudinal slope (ascent or descent) these methods of increasing the coupling weight are not always effective due to the unstable nature of the movement. This article presents experimental studies to improve the longitudinal stability of a tractor-transport unit (TTA) by using an original towing-distributing device, which allows simultaneously adjusting the longitudinal stability of the energy vehicle by redistributing the coupling weight inherent in the design characteristics in the tractor-transport unit system during its movement. Keywords: HEADING STABILITY, STABILIZATION, TRACTOR-TRANSPORT UNIT, TOW-DISTRIBUTING DEVICE, EFFICIENCY
Despite a fairly large range of methods known in the existing branches of technology and used in the industry for detecting possible failures and malfunctions, it is still relevant to study the possibilities of using modern digital tools and instruments that are capable of carrying out in-place diagnostics or fixing workers at a sufficient level of reliability with a minimum research time. Parameters of systems and elements of such a complex restored object as a technological complex used in agriculture. The article substantiates the use of a high-precision inclinometric complex for in-place diagnostics of a technological complex and presents the results of an experimental study of a machine-tractor unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.