The majority of periprosthetic joint infections occur shortly after primary joint replacement (<3 months) and require the removal of all implant components for the treatment period (~4 months). A clinically relevant animal model of periprosthetic infection should, therefore, establish an infection with implant components in place. Here, we describe a joint replacement model in the rat with ultrahigh molecular weight polyethylene (UHMWPE) and titanium components inoculated at the time of surgery by methicillin-sensitive Staphylococcus aureus (S. aureus), which is one of the main causative microorganisms of periprosthetic joint infections. We monitored the animals for 4 weeks by measuring gait, weight-bearing symmetry, von Frey testing, and micro-CT as our primary endpoint analyses. We also assessed the infection ex vivo using colony counts on the implant surfaces and histology of the surrounding tissues. The results confirmed the presence of a local infection for 4 weeks with osteolysis, loosening of the implants, and clinical infection indicators such as redness, swelling, and increased temperature. The utility of specific gait analysis parameters, especially temporal symmetry, hindlimb duty factor imbalance, and phase dispersion was identified in this model for assessing the longitudinal progression of the infection, and these metrics correlated with weight-bearing asymmetry. We propose to use this model to study the efficacy of using different local delivery regimens of antimicrobials on addressing periprosthetic joint infections. Statement of clinical significance: We have established a preclinical joint surgery model, in which postoperative recovery can be monitored over a multi-week course by assessing gait, weight-bearing, and allodynia. This model can be used to study the efficacy of different combinations of implant materials and medication regimens.
Interactions of nanoparticles with biological matter—both somatically and in nature—draw scientists’ attention. Nanoparticulate systems are believed to be our saviors, acting as versatile drug delivery vehicles. However, they can also cause life-threatening bodily damage. One of the most important properties of nanocrystalline cerium dioxide is its antioxidant activity, which decreases the abundance of reactive oxygen species during inflammation. In this paper, we report on synergistic effects of inorganic cerium oxide (IV) nanoparticles conjugated with the antioxidative enzymes superoxide dismutase and catalase on scavenging oxygen and nitrogen radicals.
Surface modification with polymer grafting is a versatile tool for tuning the surface properties of a wide variety of materials. From a practical point of view, such a process should be readily scalable and transferable between different substrates and consist of as least number of steps as possible. To this end, a cross-linkable amphiphilic copolymer system that is able to bind covalently to surfaces and form permanently attached networks via a one-step procedure is reported here. This system consists of brushlike copolymers (molecular brushes) made of glycidyl methacrylate, poly(oligo(ethylene glycol) methyl ether methacrylate), and lauryl methacrylate, which provide the final product with tunable reactivity and balance between hydrophilicity and hydrophobicity. The detailed study of the copolymer synthesis and properties has been carried out to establish the most efficient pathway to design and tailor this amphiphilic molecular brush system for specific applications. As an example of the applications, we showed the ability to control the deposition of graphene oxide (GO) sheets on both hydrophilic and hydrophobic surfaces using GO modified with the molecular brushes. Also, the capability to tune the osteoblast cell adhesion with the copolymer-based coatings was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.