Surface modification with polymer grafting is a versatile tool for tuning the surface properties of a wide variety of materials. From a practical point of view, such a process should be readily scalable and transferable between different substrates and consist of as least number of steps as possible. To this end, a cross-linkable amphiphilic copolymer system that is able to bind covalently to surfaces and form permanently attached networks via a one-step procedure is reported here. This system consists of brushlike copolymers (molecular brushes) made of glycidyl methacrylate, poly(oligo(ethylene glycol) methyl ether methacrylate), and lauryl methacrylate, which provide the final product with tunable reactivity and balance between hydrophilicity and hydrophobicity. The detailed study of the copolymer synthesis and properties has been carried out to establish the most efficient pathway to design and tailor this amphiphilic molecular brush system for specific applications. As an example of the applications, we showed the ability to control the deposition of graphene oxide (GO) sheets on both hydrophilic and hydrophobic surfaces using GO modified with the molecular brushes. Also, the capability to tune the osteoblast cell adhesion with the copolymer-based coatings was demonstrated.
Despite noteworthy progress in the fabrication of large-area graphene sheetlike nanomaterials, the vapor-based processing still requires sophisticated equipment and a multistage handling of the material. An alternative approach to manufacturing functional graphene-based films includes the employment of graphene oxide (GO) micrometer-scale sheets as precursors. However, search for a scalable manufacturing technique for the production of high-quality GO nanoscale films with high uniformity and high electrical conductivity is still continuing. Here we show that conventional dip-coating technique can offer fabrication of high quality mono- and bilayered films made of GO sheets. The method is based on our recent discovery that encapsulating individual GO sheets in a nanometer thick molecular brush copolymer layer allows for the nearly perfect formation of the GO layers via dip coating from water. By thermal reduction the bilayers (cemented by a carbon-forming polymer linker) are converted into highly conductive and transparent reduced GO films with a high conductivity up to 10 S/cm and optical transparency on the level of 90%. The value is the highest electrical conductivity reported for thermally reduced nanoscale GO films and is close to the conductivity of indium tin oxide currently in use for transparent electronic devices, thus making these layers intriguing candidates for replacement of ITO films.
A chip-scale mid-IR water sensor was developed using silicon nitride (SiN) waveguides coated with poly(glycidyl methacrylate) (PGMA). The label-free detection was conducted at λ=2.6-2.7 μm because this spectral region overlaps with the characteristic O-H stretch absorption while being transparent to PGMA and SiN. Through the design of a hybrid waveguide structure, we were able to tailor the mid-IR evanescent wave into the PGMA layer and the surrounding water and, consequently, to enhance the light-analyte interaction. A 7.6 times enhancement of sensitivity is experimentally demonstrated and explained by material integration engineering as well as waveguide mode analysis. Our sensor platform made by polymer-dielectric hybrids can be applied to other regions of the mid-IR spectrum to probe other analytes and can ultimately achieve a multispectral sensor on-a-chip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.