We derive very simple compact equation for gravity water waves which includes nonlinear wave term (à la NLSE) and advection term (may results in wave breaking).
Abstract. We study soliton collisions in the Dyachenko–Zakharov equation for the envelope of gravity waves in deep water. The numerical simulations of the soliton interactions revealed several fundamentally different effects when compared to analytical two-soliton solutions of the nonlinear Schrodinger equation. The relative phase of the solitons is shown to be the key parameter determining the dynamics of the interaction. We find that the maximum of the wave field can significantly exceed the sum of the soliton amplitudes. The solitons lose up to a few percent of their energy during the collisions due to radiation of incoherent waves and in addition exchange energy with each other. The level of the energy loss increases with certain synchronization of soliton phases. Each of the solitons can gain or lose the energy after collision, resulting in increase or decrease in the amplitude. The magnitude of the space shifts that solitons acquire after collisions depends on the relative phase and can be either positive or negative.
SubmittedWe analyze modern operational models of wind wave prediction on the subject for compliance dissipation. Our numerical simulations from the "first principle" demonstrate that heuristic formulas for damping rate of free wind sea due to "white capping" (or wave breaking) dramatically exaggerates the role of this effect in these models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.