Hydrographic data collected from research cruises, bottom-anchored moorings, driftingIce-Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km 3 of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing accompanied by sea ice melt, a wind-forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice-Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year-to-year variability, or the more subtle interannual variations. Plain Language AbstractThe Beaufort Gyre centered in the Canada Basin of the Arctic Ocean is the major reservoir of fresh water in the Arctic. The primary focus of this study is on quantifying variability and trends in liquid (water) and solid (sea ice) freshwater content in this region. The Beaufort Gyre Exploration Program was initiated in 2003 to synthesize results of historical data analysis, design and conduct long-term observations, and to provide information for numerical modeling under the umbrella of the FAMOS (Forum for Arctic Observing and Modeling Synthesis) project. The data collected from research cruises, moorings, Ice-Tethered Profiler observations, and satellite altimetry document an increase of more than 6,400 km 3 of liquid freshwater content from 2003 to 2018, a 40% growth relative to the climatology of the 1970s. This fresh water volume is comparable to the fresh water volume released to the sub-arctic seas during the Great Salinity Anomaly episode of the 1970s. Thus, since the 2000s, the stage has been set for another possible release of fresh water to lower latitudes with accompanying climate impacts, including changes to sea ice conditions, ocean circulation, and ecosystems of the Sub-Arctic similar to the influence of the Great Salinity Anomaly observed in the 1970s.
Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability.
Accelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub‐Arctic seas. Surplus freshwater discharge from Greenland since the 1990s, comparable in volume to the amount of freshwater present during the Great Salinity Anomaly events, could spread and accumulate in the sub‐Arctic seas, influencing convective processes there. However, hydrographic observations in the Labrador Sea and the Nordic Seas, where the Greenland freshening signal might be expected to propagate, do not show a persistent freshening in the upper ocean during last two decades. This raises the question of where the surplus Greenland freshwater has propagated. In order to investigate the fate, pathways, and propagation rate of Greenland meltwater in the sub‐Arctic seas, several numerical experiments using a passive tracer to track the spreading of Greenland freshwater have been conducted as a part of the Forum for Arctic Ocean Modeling and Observational Synthesis effort. The models show that Greenland freshwater propagates and accumulates in the sub‐Arctic seas, although the models disagree on the amount of tracer propagation into the convective regions. Results highlight the differences in simulated physical mechanisms at play in different models and underscore the continued importance of intercomparison studies. It is estimated that surplus Greenland freshwater flux should have caused a salinity decrease by 0.06–0.08 in the sub‐Arctic seas in contradiction with the recently observed salinification (by 0.15–0.2) in the region. It is surmised that the increasing salinity of Atlantic Water has obscured the freshening signal.
[1] Numerical model experiments are conducted to address the previously unexplained anomalously high storm surge along the Florida coast of Apalachee Bay during Hurricane Dennis (2005). The 2 -3 m surge observed during this storm cannot be obviously explained by the relatively weak local winds over this bay 275 km east of the storm center. Realistic and idealized numerical experiments demonstrate that the along-shore winds to the east of the storm center built a high sea level anomaly along the coast which traveled northward to Apalachee Bay as a topographic Rossby wave. The wave was amplified as the storm moved nearly parallel to the shelf and at comparable speed to the wave phase speed. These results suggest that enlarging the domain of the storm surge forecasting models can improve the surge forecast for a storm moving along a similar track, and have now been applied to operational use.
The cumulative Greenland freshwater flux anomaly has exceeded 5,000 km 3 since the 1990s. The volume of this surplus freshwater is expected to cause substantial freshening in the North Atlantic. Analysis of hydrographic observations in the subpolar seas reveals freshening signals in the 2010s. The sources of this freshening are yet to be determined. In this study, the relationship between the surplus Greenland freshwater flux and this freshening is tested by analyzing the propagation of the Greenland freshwater anomaly and its impact on salinity in the subpolar North Atlantic based on observational data and numerical experiments with and without the Greenland runoff. A passive tracer is continuously released during the simulations at freshwater sources along the coast of Greenland to track the Greenland freshwater anomaly. Tracer budget analysis shows that 44% of the volume of the Greenland freshwater anomaly is retained in the subpolar North Atlantic by the end of the simulation. This volume is sufficient to cause strong freshening in the subpolar seas if it stays in the upper 50–100 m. However, in the model the anomaly is mixed down to several hundred meters of the water column resulting in smaller magnitudes of freshening compared to the observations. Therefore, the simulations suggest that the accelerated Greenland melting would not be sufficient to cause the observed freshening in the subpolar seas and other sources of freshwater have contributed to the freshening. Impacts on salinity in the subpolar seas of the freshwater transport through Fram Strait and precipitation are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.