This work examines a biomechanical system consisting of the hip endoprosthesis and bones of the pelvic region of a person under a load corresponding to the equilibrium of a person in double-supported state. An assessment of the strength of a customised endoprosthesis has been carried out based on the analysis of the stress-strain state of the finite element model of the "skeleton-hip prosthesis" system when tightening the screws and when the system is subjected the person's weight; dangerous areas of the pelvic bone with high level of stresses have been identified. As recommendations, optimization of the location and number of screws used in order to create a more uniform stress distribution is proposed.
The article contains a biomechanical assessment of the performance of a customized endoprosthesis of the hip joint. Finite-element models of the hip bone and the implant in the projected and actual positions are prepared. The article provides the results of the static structural analysis for a patient in the two-leg standing position in the post-operative period. The results are compared for various implant positions. As a recommendation, it is proposed to optimize the location and the number of screws for a more uniform stress distribution.
This study presents a model for Ti6Al4V alloy produced by applying electron beam melting as continuum media with orthotropic elastic and plastic properties and its application in total hip replacement (THR). The model exhibits three Young’s moduli, three shear moduli, and three Poisson’s ratios as elastic properties and six coefficients describing the Hill yield criterion. Several uniaxial tension and torsion experiments and subsequent data processing were performed to evaluate the properties and coefficients. The typical values obtained for Young’s moduli, shear moduli, and Poisson’s ratio were 121–124 MPa, 37–42 MPa, and 0.25–0.26, respectively. A comparison of the experimental tension and torsion curves with those obtained by a finite element analysis revealed a good correlation with a maximum error of 9.5%. The finite element simulation of a personalised pelvic implant for THR manufactured from the obtained material proved the mechanical capability of the implant to successfully withstand the applied loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.