N6-methyladenosine (m6A) is a common modification of mRNA, with potential roles in fine-tuning the RNA life-cycle. Here, we identify a dense network of proteins interacting with METTL3, a component of the methyltransferase complex, and show that three of them, WTAP, METTL14 and KIAA1429, are required for methylation. Monitoring m6A levels upon WTAP depletion allowed the definition of accurate and near single-nucleotide resolution methylation maps, and their classification into WTAP-dependent and independent sites. WTAP-dependent sites are located at internal positions in transcripts, are topologically static across a variety of systems we surveyed, and are inversely correlated with mRNA stability, consistent with a role in establishing ‘basal’ degradation rates. WTAP-independent sites form at the first transcribed base as part of the cap structure, and are present at thousands of sites, forming a previously unappreciated layer of transcriptome complexity. Our data sheds new light on proteomic and transcriptional underpinnings of this epitranscriptomic modification.
Several groups have generated programmable transcription factors based on the versatile Cas9 protein, yet their relative potency and effectiveness across various cell types and species remain unexplored. Here, we compare Cas9 activator systems and examine their ability to induce robust gene expression in several human, mouse, and fly cell lines. We also explore the potential for improved activation through the combination of the most potent activator systems and assess the role of cooperativity in maximizing gene expression.
We demonstrate that by altering the length of Cas9-associated guide RNA(gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.