Several groups have generated programmable transcription factors based on the versatile Cas9 protein, yet their relative potency and effectiveness across various cell types and species remain unexplored. Here, we compare Cas9 activator systems and examine their ability to induce robust gene expression in several human, mouse, and fly cell lines. We also explore the potential for improved activation through the combination of the most potent activator systems and assess the role of cooperativity in maximizing gene expression.
The RNA-guided endonuclease Cas9 can be converted into a programmable transcriptional repressor, but inefficiencies in target-gene silencing have limited its utility. Here we describe an improved Cas9 repressor based on the C-terminal fusion of a rationally designed bipartite repressor domain, KRAB-MeCP2, to nuclease-dead Cas9. We demonstrate the system's superiority in silencing coding and noncoding genes, simultaneously repressing a series of target genes, improving the results of single and dual guide RNA library screens, and enabling new architectures of synthetic genetic circuits.
We demonstrate that by altering the length of Cas9-associated guide RNA(gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.
The RNA-guided bacterial nuclease Cas9 can be reengineered as a programmable transcription factor by a series of changes to the Cas9 protein in addition to the fusion of a transcriptional activation domain (AD) [1][2][3][4][5] . However, the modest levels of gene activation achieved by current Cas9 activators have limited their potential applications. Here we describe the development of an improved transcriptional regulator through the rational design of a tripartite activator, VP64-p65-Rta (VPR), fused to Cas9. We demonstrate its utility in activating expression of endogenous coding and non-coding genes, targeting several genes simultaneously and stimulating neuronal differentiation of induced pluripotent stem cells (iPSCs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.