Visuospatial working memory mechanisms have been studied extensively at single cell level in the dorsolateral prefrontal cortex (PFCd) in nonhuman primates. Despite the importance of short-term memory of sound location for behavioral orientation, there are only a few studies on auditory spatial working memory. The purpose of this study was to investigate neuronal mechanisms underlying working memory processing of auditory and visual location information at single cell level in the PFCd. Neuronal activity was recorded in monkeys performing a delayed matching-to-sample task (DMTS). The location of a visual or auditory stimulus was used as a memorandum. The majority of the neurons that were activated during presentation of the cue memorandum were selective either for visual or auditory spatial information. A small group of cue related bimodal neurons were sensitive to the location of the cue regardless of whether the stimulus was visual or auditory, suggesting modality independent processing of spatial information at cellular level in the PFCd. Most neurons that were activated during the delay period were modality specific, responding either during visual or auditory trials. All bimodal delay related neurons that responded during both visual and auditory trials were spatially nonselective. The results of the present study suggest that in addition to the modality specific parallel mechanism, working memory of auditory and visual space also involves modality independent processing at cellular level in the PFCd.
The prefrontal cortex (PFC) has a central role in working memory (WM). Resistance to distraction is considered a fundamental feature of WM and PFC neuronal activity. However, although unexpected stimuli often disrupt our work, little is known about the underlying neuronal mechanisms involved. In the present study, we investigated whether irregularly presented distracters disrupt WM task performance and underlying neuronal activity. We recorded single neuron activity in the PFC of 2 monkeys performing WM tasks and investigated effects of auditory and visual distracters on WM performance and neuronal activity. Distracters impaired memory task performance and affected PFC neuronal activity. Distraction that was of the same sensory modality as the memorandum was more likely to impair WM performance and interfere with memory-related neuronal activity than information that was of a different sensory modality. The study also shows that neurons not involved in memory processing in less demanding conditions may become engaged in WM processing in more demanding conditions. The study demonstrates that WM performance and underlying neuronal activity are vulnerable to irregular distracters and suggests that the PFC has mechanisms that help to compensate for disruptive effects of external distracters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.