Анализируется проблематика векторного частотного управления асинхронным электроприводом, широко применяемым в качестве исполнительного элемента в рамках современных средств построения обрабатывающих комплексов, разрабатываемых в машиностроительной отрасли. Предлагается вариант частотно-регулируемого асинхронного электропривода, управляемыми величинами которого являются полярные координаты вектора тока в обмотке статора. В данном варианте применяется закон управления, согласно которому угол между векторами тока в обмотке статора и потокосцеплением обмотки ротора не меняется. Управление скоростью вращения электропривода и электромагнитным моментом реализуется заданием модуля тока обмотки статора. При этом формирование угла поворота вектора тока обмотки статора, зависящего от модуля величины потокосцепления роторной обмотки и значения скольжения асинхронного двигателя, дает возможность сохранять постоянным угол между векторами тока обмотки статора и потокосцеплением обмотки ротора, что, в свою очередь, реализует направленное формирование переходных процессов в асинхронном двигателе. Рассматриваемый вариант частотно-регулируемого асинхронного электропривода может найти применение в производственных механизмах, в которых быстродействие не является определяющим критерием функционирования привода, а важно плавное регулирование электромагнитного момента и возможность его ограничения во всех режимах работы. Данный способ управления характеризуется тем, что электромагнитный момент определяется исключительно модулем тока обмотки статора, а контур регулирования скольжения используется для реализации закона поддерживания постоянства угла между током обмотки статора и потокосцеплением обмотки ротора The article analyzes the problems of vector frequency control of asynchronous electric drive, widely used as an executive element in the framework of modern means of constructing processing complexes developed in the machine-building industry. Here we propose a variant of a frequency-controlled asynchronous electric drive, in which the polar coordinates of the current vector in the stator winding are the controlled quantities. In this variant, the control law is applied, according to which the angle between the current vectors in the stator winding and the flow coupling of the rotor winding does not change. The control of the speed of rotation of the electric drive and the electromagnetic torque is realized by setting the current module of the stator winding. At the same time, the formation of the angle of rotation of the current vector of the stator winding, depending on the modulus of the magnitude of the flow coupling of the rotor coil and the sliding value of the asynchronous motor, makes it possible to keep the angle between the current vectors of the stator winding and the flow coupling of the rotor winding constant, which in turn implements the directional formation of transients in the asynchronous motor. The considered variant of a frequency-controlled asynchronous electric drive can be used in production mechanisms in which speed is not a determining criterion for the operation of the drive, but smooth regulation of the electromagnetic torque and the possibility of its limitation in all operating modes is important. This control method is characterized by the fact that the electromagnetic moment is determined exclusively by the current module of the stator winding, and the slip control circuit is used to implement the law of maintaining the constancy of the angle between the current of the stator winding by the flow coupling of the rotor winding
When studying the objects of management in the field of electric power, we meet with various inaccuracies in determining their parameters. One of the methods of dealing with uncertainties is the use of various estimates of the parameters of the control object. modern science has developed various methods for assessing the uncertain parameters of the control object in the electric power industry. parameter uncertainty occurs when the set of parameters of the control object is more than one point. If this set is defined using probabilistic characteristics, then this is the so-called probabilistic uncertainty of the object parameters. If the boundaries of the intervals in which they are enclosed are known for the object parameters, then such uncertainty is called interval uncertainty. if the object parameters are set using the membership function, then the theory of fuzzy logic is used. Interval determination of parameters of the control object is used when working with values for which only the boundaries of the intervals within which their values are enclosed are known. The interval approach in the description of object parameters is used to account for rounding and errors that occur during calculations on a computer and is a strong method in the representation of objects with uncertain parameters, which are very common in the electric power industry. The reason why interval systems are used is the incompleteness of information about the control object, errors in measuring the parameters of the object, linearization errors, and so on. Various problems of the classical theory of automatic control allow us to replace the concentrated parameters with their interval analogues. Many interval problems are adequate for practical applications. The synthesis of linear quadratic regulators refers to the classical method, which allows us to obtain regulators that minimize the integral quality criterion with respect to the resource of regulated and regulatory quantities. In this paper, we study the possibility of synthesizing linear quadratic regulators for electric power facilities specified in intervals. This application of two well-known methods makes it possible to work with nonlinear objects using the classical linear control theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.