We derive new results related to the portfolio choice problem for power and logarithmic utilities. Assuming that the portfolio returns follow an approximate log-normal distribution, the closed-form expressions of the optimal portfolio weights are obtained for both utility functions. Moreover, we prove that both optimal portfolios belong to the set of mean-variance feasible portfolios and establish necessary and sufficient conditions such that they are meanvariance efficient. Furthermore, we extend the derived theoretical finding to the general class of the log-skew-normal distributions. Finally, an application to the stock market is presented and the behaviour of the optimal portfolio is discussed for different values of the relative risk aversion coefficient. It turns out that the assumption of log-normality does not seem to be a strong restriction.
We derive new results related to the portfolio choice problem for power and logarithmic utilities. Assuming that the portfolio returns follow an approximate log-normal distribution, the closed-form expressions of the optimal portfolio weights are obtained for both utility functions. Moreover, we prove that both optimal portfolios belong to the set of mean-variance feasible portfolios and establish necessary and sufficient conditions such that they are mean-variance efficient. Furthermore, an application to the stock market is presented and the behavior of the optimal portfolio is discussed for different values of the relative risk aversion coefficient. It turns out that the assumption of log-normality does not seem to be a strong restriction.
In this paper, we derive an analytical solution to the dynamic optimal portfolio choice problem in the case of an investor equipped with a power utility function of wealth. The results are established by solving the Bellman backward recursion under the assumption that the vector of asset returns follows a vector-autoregressive process with predictable variables. In an empirical study, the performance of the derived solution is compared with the one obtained by applying the numerical method. The comparison is performed in terms of the final wealth and its expected utility. It is documented that the application of the analytical solution to the multi-period portfolio choice problem leads to higher values of both the final wealth and the expected utility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.