The article explores data mining algorithms, which based on rules and calculations, that allow us to create a model that analyzes the data provided by searching for specific patterns and trends. The purpose of this work is to analyze correlation-regression algorithms on a statistical dataset of chronic diseases. Data mining allows building many models, multiple algorithms can be used within a single solution. The article explores the algorithms of clustering, correlation analysis, Naive Bayes algorithm for obtaining different views of data. Since diabetes is one of the most dangerous chronic diseases, the pathogenesis of which is a lack of insulin in the human body, which causes metabolic disorders and pathological changes in various organs and tissues. As a result, it leads to disability of all functional systems of the body. It was decided to investigate the data related to this disease. Also, the quality of the developed methods of information retrieval from the dataset was evaluated and the most informative features were identified. The developed methods were implemented in the system of intellectual data processing. Past studies show promise of using data mining methods to improve the quality of patient care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.