In textbooks, undersaturated solutions of low molar mass compounds and mixtures of freely miscible liquids are considered as homogeneous at larger length scales exceeding appreciably dimensions of individual molecules. However, growing experimental evidence reveals that it is not the case. Large-scale structures with sizes on the order of 100 nm are present in solutions and mixtures used in everyday life and research practice, especially in aqueous systems. These mesoscale inhomogeneities are long-lived, and (relatively slow) kinetics of their formation can be monitored upon mixing the components. Nevertheless, the nature of these structures and mechanisms behind their formation are not clear yet. Since it was previously suggested that these can be nanobubbles stabilized by adsorbed solute at the gas/solvent interface, we devote the current study to addressing this question. Static and dynamic light scattering was used to investigate solutions and mixtures prepared at ordinary conditions (equilibrated with air at 1 atm), prepared with degassed solvent, and solutions and mixtures degassed after formation of large structures. The behavior of large structures in strong gravitational centrifugal fields was also investigated. Systems from various categories were chosen for this study: aqueous solutions of an inorganic ionic compound (MgSO4), organic ionic compound (citric acid), uncharged organic compound (urea), and a mixture of water with organic solvent freely miscible with water (tert-butyl alcohol). Obtained results show that these structures are not nanobubbles in all cases. Visualization of large-scale structures via nanoparticle tracking analysis is presented. NTA results confirm conclusions from our previous light scattering work.
We have performed a detailed experimental study on aqueous solutions of tertiary butyl alcohol which were a subject of long-standing controversies regarding the puzzling presence of virtually infinitely stable large-scale structures in such solutions occurring at length scales exceeding appreciably dimensions of individual molecules, referred to also as mesoscale structures. A combination of static and dynamic light scattering yielding information on solution structure and dynamics and gas chromatography coupled with mass spectrometry yielding information on chemical composition was used. We show that tertiary butyl alcohol clearly exhibiting such structures upon mixing with water does not contain any propylene oxide, which was previously considered as a source of these structures (an impurity expected to be present in all commercial samples of TBA). More importantly, we show that no mesoscale structures are generated upon addition of propylene oxide to aqueous solutions of TBA. The ternary system TBA/water/propylene oxide exhibits homogeneous mixing of the components on mesoscales. We show that the source of the mesoscale structures is a mesophase separation of appreciably more hydrophobic compounds than propylene oxide. These substances are explicitly analytically identified as well as their disappearance upon filtering out the mesoscale structures by nanopore filtration. We clearly show which substances are disappearing upon filtration and which are not. This enables us to estimate with rather high probability the chemical composition of the mesoscale structures. Visualization of large-scale structures via nanoparticle tracking analysis is also presented. Video capturing the mesoscale particles as well as their Brownian motion can be found in the Supporting Information .
We report on a mesoscale solubility reflecting the fact that solubility is achieved not only by the well-known "like likes like" or "like dissolves like" based on molecular solvation but also on mesoscale solubilization of dislike compounds characterized in that the solubility (homogeneous distribution over the whole volume of the system) is achieved on a mesoscale level ranging from tens to hundreds of nanometers. It is shown that mesoscale solubility is a spontaneously occurring, literally everywhere present phenomenon, which was hidden and overlooked for a long time. This paper reveals the physical mechanism of mesoscale solubilization comprising nucleation and aggregation accompanied by the development of significant surface zeta potentials on nanoprecipitates, giving them a long-term stability. We show that mesoscale solubilization is common for aqueous as well as nonaqueous systems. Experiments with organic solvents not capable of self-ionization (self-dissociation) instead of water also shed light on the mechanism of the generation of surface zeta potentials at hydrophobic interfaces. We identified the key parameters enabling the mesoscale solubilization and mapped its occurrence as their function. Mesoscale structures including their formation kinetics, long-term stability, and different types of solubilization procedures were characterized by scattering and ultramicroscopic visualization comprising sizing and counting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.