We investigate analytically as well as numerically the properties of s-wave holographic superconductors in d-dimensional spacetime and in the presence of Logarithmic nonlinear electrodynamics. We study three aspects of this kind of superconductors. First, we obtain, by employing analytical Sturm-Liouville method as well as numerical shooting method, the relation between critical temperature and charge density, ρ, and disclose the effects of both nonlinear parameter b and the dimensions of spacetime, d, on the critical temperature T c . We find that in each dimension, T c /ρ 1/(d−2) decreases with increasing the nonlinear parameter b while it increases with increasing the dimension of spacetime for a fixed value of b. Then, we calculate the condensation value and critical exponent of the system analytically and numerically and observe that in each dimension, the dimensionless condensation get larger with increasing the nonlinear parameter b. Besides, for a fixed value of b, it increases with increasing the spacetime dimension. We confirm that the results obtained from our analytical method are in agreement with the results obtained from numerical shooting method. This fact further supports the correctness of our analytical method. Finally, we explore the holographic conductivity of this system and find out that the superconducting gap increases with increasing either the nonlinear parameter or the spacetime dimension. * asheykhi@shirazu.ac.ir
The full description of a superconductor requires that it has an infinite dc conductivity (or zero electrical resistivity) as well as expels the external magnetic fields. Thus, for any holographic superconductor which is dual to a real superconductor, it is necessary to examine, simultaneously, these two features based on the gauge/gravity duality. In this paper, we explore numerically these two aspects of the higher dimensional holographic superconductors, in the presence of a power-Maxwell electrodynamics as the gauge field. At first, we calculate the critical temperature, condensation, conductivity, and superconducting gap, in the absence of magnetic field and disclose the effects of both power parameter, s, as well as the spacetime dimensions, d, on this quantities. Then, we immerse the superconductor into an external magnetic field, B, and observe that with increasing the magnetic field, the starting point of condensation occurs at temperature less than the critical temperature, T c , in the absence of magnetic field. This implies that at a fixed temperature, we can define a critical magnetic field, above which the critical temperature goes to zero which is similar to the Meissner effect in superconductor. In these indications, we also try to show the distinction of the conformal invariance of the power-Maxwell Lagrangian that occurs for s ¼ d=4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.