Matriptase belongs to trypsin-like serine proteases involved in matrix remodeling/degradation, growth regulation, survival, motility, and cell morphogenesis. Herein, we report a structure-based approach, which led to the discovery of sulfonamide and amide derivatives of pyridyl bis(oxy)-benzamidine as potent and selective matriptase inhibitors. Co-crystal structures of selected compounds in complex with matriptase supported compound designing. Additionally, WaterMap analyses indicated the possibility of occupying a distinct pocket within the catalytic domain, exploration of which resulted in >100-fold improvement in potency. Co-crystal structure of 10 with matriptase revealed critical interactions leading to potent target inhibition and selectivity against other serine proteases.
Small molecule potent IRAK4 inhibitors from a novel bicyclic heterocycle class were designed and synthesized based on hits identified from Aurigene’s compound library. The advanced lead compound, CA-4948, demonstrated good cellular activity in ABC DLBCL and AML cell lines. Inhibition of TLR signaling leading to decreased IL-6 levels was also observed in whole blood assays. CA-4948 demonstrated moderate to high selectivity in a panel of 329 kinases as well as exhibited desirable ADME and PK profiles including good oral bioavailability in mice, rat, and dog and showed >90% tumor growth inhibition in relevant tumor models with excellent correlation with in vivo PD modulation. CA-4948 was well tolerated in toxicity studies in both mouse and dog at efficacious exposure. The overall profile of CA-4948 prompted us to select it as a clinical candidate for evaluation in patients with relapsed or refractory hematologic malignancies including non-Hodgkin lymphoma and acute myeloid leukemia.
Eurycoma longifolia is one of the commonly consumed herbal preparations and its major chemical compound, eurycomanone, has been described to have antimalarial, antipyretic, aphrodisiac, and cytotoxic activities. Today, the consumption of E. longifolia is popular through the incorporation of its extract in food items, most frequently in drinks such as tea and coffee. In the current study, the characterisation of the physicochemical and pharmacokinetic (PK) attributes of eurycomanone were conducted via a series of in vitro and in vivo studies in rats and mice. The solubility and chemical stability of eurycomanone under the conditions of the gastrointestinal tract environment were determined. The permeability of eurycomanone was investigated by determining its distribution coefficient in aqueous and organic environments and its permeability using the parallel artificial membrane permeability assay system and Caco-2 cultured cells. Eurycomanone’s stability in plasma and its protein-binding ability were measured by using an equilibrium dialysis method. Its stability in liver microsomes across species (mice, rat, dog, monkey, and human) and rat liver hepatocytes was also investigated. Along with the PK evaluations of eurycomanone in mice and rats, the PK parameters for the Malaysian Standard (MS: 2409:201) standardised water extract of E. longifolia were also evaluated in rats. Both rodent models showed that eurycomanone in both the compound form and extract form had a half-life of 0.30 h. The differences in the bioavailability of eurycomanone in the compound form between the rats (11.8%) and mice (54.9%) suggests that the PK parameters cannot be directly extrapolated to humans. The results also suggest that eurycomanone is not readily absorbed across biological membranes. However, once absorbed, the compound is not easily metabolised (is stable), hence retaining its bioactive properties, which may be responsible for the various reported biological activities.
Natural product analogs are significant sources for therapeutic agents. To capitalize efficiently on the effective features of naturally occurring substances, a natural product-based library production platform has been devised at Aurigene for drug lead discovery. This approach combines the attractive biological and physicochemical properties of natural product scaffolds, provided by eons of natural selection, with the chemical diversity available from parallel synthetic methods. Virtual property analysis, using computational methods described here, guides the selection of a set of natural product scaffolds that are both structurally diverse and likely to have favorable pharmacokinetic properties. The experimental characterization of several in vitro ADME properties of twenty of these scaffolds, and of a small set of designed congeners based upon one scaffold, is also described. These data confirm that most of the scaffolds and the designed library members have properties favorable to their utilization for creating libraries of lead-like molecules.
The clinical success of antibody-mediated immune checkpoint blockade therapies has transformed the cancer therapy paradigm by demonstrating that durable antitumor immune responses and long-term remissions may be achieved in a subset of patients across a diverse range of cancers. However, the majority of patients fail to respond to antibody therapies targeting single immune checkpoint pathways and antibodies exhibit a long in vivo half-life (>15-20 days with >70% target occupancy for months) which may contribute to the emergence of immune-related adverse events. Additionally, antibody therapies must be administered by intravenous infusion in a hospital or clinic which places an additional burden on patients who may have mobility challenges. Thus, there is a significant opportunity for a novel immune checkpoint therapy that can address the shortcomings associated with the current antibody therapies. CA-170 is a small molecule, orally bioavailable antagonist of the PD-L1, PD-L2 and VISTA/PD-1H immune checkpoint pathways which is currently undergoing Phase I clinical testing. In preclinical safety studies conducted in rodents and non-human primates, orally administered CA-170 shows no signs of toxicity when dosed up to 1000 mg/kg for 28 consecutive days. CA-170 exhibits an oral bioavailability of approximately 40% and <10% in mouse and monkey, respectively, and the plasma half-life ranges from approximately 0.5 hours for mouse to approximately 3.25-4.0 hours for cynomolgus monkey. The ability of CA-170 to disrupt the signaling of PD-1/PD-L1/2 or VISTA/PD-1H has been inferred though in vitro functional studies. CA-170 exhibits potent activity comparable to that of blocking PD-1 or VISTA antibodies when tested in cell culture assays to rescue the proliferation or IFN-γ secretion of lymphocytes stimulated in the presence of inhibitory PD-L1, PD-L2 or VISTA/PD-1H proteins. In mice, orally administered CA-170 inhibits the growth of syngeneic tumors, enhances peripheral T cell activation, and promotes the activation of tumor infiltrating CD8+ T cells in a dose dependent manner. These non-clinical data provide a strong rational for the continued Phase I clinical development of CA-170, the first oral, small molecule immune checkpoint antagonist for the treatment of advanced cancers. Citation Format: Adam S. Lazorchak, Troy Patterson, Yueyun Ding, Pottayil G. Sasikumar, Naremaddepalli S. Sudarshan, Nagaraj M. Gowda, Raghuveer K. Ramachandra, Dodheri S. Samiulla, Sanjeev Giri, Rajesh Eswarappa, Murali Ramachandra, David Tuck, Timothy Wyant. CA-170, an oral small molecule PD-L1 and VISTA immune checkpoint antagonist, promotes T cell immune activation and inhibits tumor growth in pre-clinical models of cancer. [abstract]. In: Proceedings of the AACR Special Conference on Tumor Immunology and Immunotherapy; 2016 Oct 20-23; Boston, MA. Philadelphia (PA): AACR; Cancer Immunol Res 2017;5(3 Suppl):Abstract nr A36.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.