This study examines the auditory attribute that describes the perceived amount of reverberation, known as "reverberance." Listening experiments were performed using two signals commonly heard in auditoria: excerpts of orchestral music and western classical singing. Listeners adjusted the decay rate of room impulse responses prior to convolution with these signals, so as to match the reverberance of each stimulus to that of a reference stimulus. The analysis examines the hypothesis that reverberance is related to the loudness decay rate of the underlying room impulse response. This hypothesis is tested using computational models of time varying or dynamic loudness, from which parameters analogous to conventional reverberation parameters (early decay time and reverberation time) are derived. The results show that listening level significantly affects reverberance, and that the loudness-based parameters outperform related conventional parameters. Results support the proposed relationship between reverberance and the computationally predicted loudness decay function of sound in rooms.
This paper examines effects of listening level and reverberation time on the perceived decay rate of synthetic room impulse responses (RIRs). A listening test was conducted with synthetic RIRs having a range of listening levels and reverberation times: in the test, subjects adjusted a physical decay rate of the RIRs to match the perceived decay rate of reference stimuli. In this way, we constructed equal reverberance contours as a function of sound pressure level and reverberation time. The experiment results confirm that listening level and reverberation time both significantly affect reverberance. The study also supports our previous finding: that the loudness decay function can be used to predict reverberance better than the conventional reverberance predictors.
Oral-binaural room impulse responses (OBRIRs) describe the room acoustical response from the mouth to the ears of a head or dummy head. In this study, we measured OBRIRs in ten rooms, ranging from small to large. In each room, a head and torso simulator (HATS) was rotated at 2 degree increments to sample the room response at the selected measurement position. In rotating the HATS, the radiation pattern of the mouth rotates with the reception pattern of ears. This paper characterises the variation in room gain and interaural response of the tested rooms, and in doing so, we consider how OBRIRs can be usefully understood in terms of acoustical parameters.
Room impulse responses (RIRs) are used to characterise the acoustical conditions inside soundcritical rooms such as auditoria. The analysis of RIRs typically involves octave-band filtering, with parameters such as reverberation time, early decay time, temporal energy ratios and spatial parameters derived from this. This paper explores the potential for applying auditory models for the analysis of RIRs-incorporating auditory temporal integration (and masking), auditory filterbank analysis, and loudness calculation. The purpose of this is to produce analysis results that are closely related to the sound experienced by listeners. A preliminary step for such analysis is to filter RIRs so that their power spectrum is similar to that of typical material that would be listened to in the rooms (e.g. music or speech), and this paper proposes a music filter suitable for orchestral music, derived from long term power spectra of anechoic music recordings. Dynamic loudness analysis of RIRs yields loudness decay functions that are approximately exponential, which should provide a useful analogy with conventional analysis methods applied to RIRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.