The objective of this study was to compare the bio-efficacy of 2-hydroxy-4-methylthiobutanoic acid (DL-HMTBA) with that of DL-methionine (DLM) as sources of methionine in terms of the growth performance, carcass traits, feather growth, and redox statuses of Cherry Valley ducks. Six hundred and thirty male ducks were randomly allotted to 9 dietary treatment groups with 7 replicates of 10 birds each. The first group received a basal diet (BD) without methionine addition that was deficient in the total number of sulfur amino acids. In Groups 2 to 5 and Groups 6 to 9, the BD was supplemented with 4 increasing doses of methionine as either DLM or DL-HMTBA. The trial was run from ages 1 to 42 d. Dietary supplementation with DLM and DL-HMTBA improved body weight gain and feed intake as well as weights of carcasses, breast meat, and feathers compared with the BD. No significant difference was observed between the 2 methionine sources on growth performance, carcass traits, and feather growth. Concentrations of some redox markers in the pectoralis major muscle were improved by addition of methionine to the BD. However, a significant difference was observed between DLM and DL-HMTBA in this respect, as the supplementation of DL-HMTBA significantly increased the total antioxidant capacity, the activities of glutathione peroxidase, and the concentration of reduced glutathione in the pectoralis major muscle, compared with DLM. No significant difference between methionine sources was found with regard to the concentrations of oxidized glutathione and malondialdehyde in the pectoralis major muscle. Both DLM and DL-HMTBA increased malondialdehyde concentrations in the pectoralis major muscle compared with the BD. In conclusion, these results indicated that DLM and DL-HMTBA have equal biological value for the growth performance, carcass traits, and feather growth of Cherry Valley duck. Moreover, the improved antioxidant capacity observed with DL-HMTBA makes this a better candidate than DLM for lowering the oxidation process in the meat during post-mortem storage and thereby contributes to a better duck meat quality.
This study determined the effects of increased consumption of sulfur amino acids (SAA), as either DL-Met or Hydroxy-Met (OH-Met), by sows and piglets on their performance and the ability of the progeny to resist a lipopolysaccharide (LPS) challenge. Thirty primiparous sows were fed a diet adequate in SAA (CON) or CON + 25% SAA, either as DL-Met or OH-Met from gestation day 85 to postnatal day 21. At 35 d old, 20 male piglets from each treatment were selected and divided into 2 groups (n = 10/treatment) for a 3 × 2 factorial design [diets (CON, DL-Met or OH-Met) and challenge (saline or LPS)]. OH-Met and/or DL-Met supplementation increased (p ≤ 0.05) piglets’ body weight gain during day 0–7 and day 7–14. Sow’s milk quality was improved in the supplemented treatments compared to the CON. The LPS challenge decreased (p ≤ 0.05) piglets’ performance from 35 to 63 d and increased (p ≤ 0.05) the levels of aspartate aminotransferase, total bilirubin, IL-1β, IL-6, TNF-a, and malondialdehyde. Plasma albumin, total protein, total antioxidant capacity and glutathione peroxidase decreased post-challenge. The results were better with OH-Met than DL-Met. The increase of Met consumption, particularly as OH-Met increased piglets’ growth performance during the lactation phase and the challenging period.
The effects of dietary methionine (Met) supplies above growth requirements on tissue biology and pork quality were studied. At 70 kg, 45 crossbred pigs were fed a control (CONT) diet adequate in Met (0.22% Met) up to 105 kg. For the last 14 days before slaughter, pigs were fed with the CONT diet or with diets where the Met level was increased to Met3 (0.66% Met) or Met5 (1.10% Met). Growth performance and carcass composition did not change with the treatment. Pigs fed the Met5 treatment displayed lower TBARS and higher glutathione levels (P ≤ .05), along with higher ultimate pH (P < .01) and lower drip, lightness and hue (P ≤ .10) in the longissimus muscle, compared to the CONT and Met3 pigs. Extra-dietary Met improved ham's technological quality in the Met3 and Met5 groups (P ≤ .05). Thus, dietary Met supplementation improves pork quality without impairing growth or carcass traits.
A meta-analysis was conducted (i) to evaluate broiler response to partial or total substitution of corn by sorghum and millet and (ii) to determine the effect of soybean meal replacement by cottonseed meal in broiler diet. The database included 190 treatments from 29 experiments published from 1990 to 2013. Bird responses to an experimental diet were calculated relative to the control (Experimental−Control), and were submitted to mixed-effect models. Results showed that diets containing millet led to similar performance as the corn-based ones for all parameters, whereas sorghum-based diets decreased growth performance. No major effect of the level of substitution was observed with millet or cottonseed meal. No effect of the level of substitution of sorghum on feed intake was found; however, growth performance decreased when the level of substitution of corn by sorghum increased. Cottonseed meal was substituted to soybean meal up to 40% and found to increase feed intake while reducing growth performance. Young birds were not more sensitive to these ingredients than older birds since there was no negative effect of these ingredients on performance in the starter phase. Results obtained for sorghum pointed out the necessity to find technological improvements that will increase the utilization of these feedstuffs in broiler diet. An additional work is scheduled to validate these statistical results in vivo and to evaluate the interactions induced with the simultaneous inclusions of sorghum, millet and cottonseed meal in broiler feeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.