The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput studies, the quantitative analyses need to address the heterogeneity of data, specific statistical properties, and the remarkable variation in microbiome composition across individuals and body sites. This has led to a broad spectrum of statistical and machine learning challenges that range from study design, data processing, and standardization to analysis, modeling, cross-study comparison, prediction, data science ecosystems, and reproducible reporting. Nevertheless, although many statistics and machine learning approaches and tools have been developed, new techniques are needed to deal with emerging applications and the vast heterogeneity of microbiome data. We review and discuss emerging applications of statistical and machine learning techniques in human microbiome studies and introduce the COST Action CA18131 “ML4Microbiome” that brings together microbiome researchers and machine learning experts to address current challenges such as standardization of analysis pipelines for reproducibility of data analysis results, benchmarking, improvement, or development of existing and new tools and ontologies.
BackgroundmicroRNAs (miRNAs) are a class of small non-coding RNAs which have been recognized as ubiquitous post-transcriptional regulators. The analysis of interactions between different miRNAs and their target genes is necessary for the understanding of miRNAs' role in the control of cell life and death. In this paper we propose a novel data mining algorithm, called HOCCLUS2, specifically designed to bicluster miRNAs and target messenger RNAs (mRNAs) on the basis of their experimentally-verified and/or predicted interactions. Indeed, existing biclustering approaches, typically used to analyze gene expression data, fail when applied to miRNA:mRNA interactions since they usually do not extract possibly overlapping biclusters (miRNAs and their target genes may have multiple roles), extract a huge amount of biclusters (difficult to browse and rank on the basis of their importance) and work on similarities of feature values (do not limit the analysis to reliable interactions).ResultsTo overcome these limitations, HOCCLUS2 i) extracts possibly overlapping biclusters, to catch multiple roles of both miRNAs and their target genes; ii) extracts hierarchically organized biclusters, to facilitate bicluster browsing and to distinguish between universe and pathway-specific miRNAs; iii) extracts highly cohesive biclusters, to consider only reliable interactions; iv) ranks biclusters according to the functional similarities, computed on the basis of Gene Ontology, to facilitate bicluster analysis.ConclusionsOur results show that HOCCLUS2 is a valid tool to support biologists in the identification of context-specific miRNAs regulatory modules and in the detection of possibly unknown miRNAs target genes. Indeed, results prove that HOCCLUS2 is able to extract cohesiveness-preserving biclusters, when compared with competitive approaches, and statistically confirm (at a confidence level of 99%) that mRNAs which belong to the same biclusters are, on average, more functionally similar than mRNAs which belong to different biclusters. Finally, the hierarchy of biclusters provides useful insights to understand the intrinsic hierarchical organization of miRNAs and their potential multiple interactions on target genes.
BackgroundMicroRNAs (miRNAs) are small non-coding RNAs which play a key role in the post-transcriptional regulation of many genes. Elucidating miRNA-regulated gene networks is crucial for the understanding of mechanisms and functions of miRNAs in many biological processes, such as cell proliferation, development, differentiation and cell homeostasis, as well as in many types of human tumors. To this aim, we have recently presented the biclustering method HOCCLUS2, for the discovery of miRNA regulatory networks. Experiments on predicted interactions revealed that the statistical and biological consistency of the obtained networks is negatively affected by the poor reliability of the output of miRNA target prediction algorithms. Recently, some learning approaches have been proposed to learn to combine the outputs of distinct prediction algorithms and improve their accuracy. However, the application of classical supervised learning algorithms presents two challenges: i) the presence of only positive examples in datasets of experimentally verified interactions and ii) unbalanced number of labeled and unlabeled examples.ResultsWe present a learning algorithm that learns to combine the score returned by several prediction algorithms, by exploiting information conveyed by (only positively labeled/) validated and unlabeled examples of interactions. To face the two related challenges, we resort to a semi-supervised ensemble learning setting. Results obtained using miRTarBase as the set of labeled (positive) interactions and mirDIP as the set of unlabeled interactions show a significant improvement, over competitive approaches, in the quality of the predictions. This solution also improves the effectiveness of HOCCLUS2 in discovering biologically realistic miRNA:mRNA regulatory networks from large-scale prediction data. Using the miR-17-92 gene cluster family as a reference system and comparing results with previous experiments, we find a large increase in the number of significantly enriched biclusters in pathways, consistent with miR-17-92 functions.ConclusionThe proposed approach proves to be fundamental for the computational discovery of miRNA regulatory networks from large-scale predictions. This paves the way to the systematic application of HOCCLUS2 for a comprehensive reconstruction of all the possible multiple interactions established by miRNAs in regulating the expression of gene networks, which would be otherwise impossible to reconstruct by considering only experimentally validated interactions.
Background: In eukaryotic cells, oxidative phosphorylation (OXPHOS) uses the products of both nuclear and mitochondrial genes to generate cellular ATP. Interspecies comparative analysis of these genes, which appear to be under strong functional constraints, may shed light on the evolutionary mechanisms that act on a set of genes correlated by function and subcellular localization of their products.
Motivation The reconstruction of gene regulatory networks (GRNs) from gene expression data has received increasing attention in recent years, due to its usefulness in the understanding of regulatory mechanisms involved in human diseases. Most of the existing methods reconstruct the network through machine learning approaches, by analyzing known examples of interactions. However, (i) they often produce poor results when the amount of labeled examples is limited, or when no negative example is available and (ii) they are not able to exploit information extracted from GRNs of other (better studied) related organisms, when this information is available. Results In this paper, we propose a novel machine learning method that overcomes these limitations, by exploiting the knowledge about the GRN of a source organism for the reconstruction of the GRN of the target organism, by means of a novel transfer learning technique. Moreover, the proposed method is natively able to work in the positive-unlabeled setting, where no negative example is available, by fruitfully exploiting a (possibly large) set of unlabeled examples. In our experiments, we reconstructed the human GRN, by exploiting the knowledge of the GRN of Mus musculus. Results showed that the proposed method outperforms state-of-the-art approaches and identifies previously unknown functional relationships among the analyzed genes. Availability and implementation http://www.di.uniba.it/∼mignone/systems/biosfer/index.html. Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.