Motivation The reconstruction of gene regulatory networks (GRNs) from gene expression data has received increasing attention in recent years, due to its usefulness in the understanding of regulatory mechanisms involved in human diseases. Most of the existing methods reconstruct the network through machine learning approaches, by analyzing known examples of interactions. However, (i) they often produce poor results when the amount of labeled examples is limited, or when no negative example is available and (ii) they are not able to exploit information extracted from GRNs of other (better studied) related organisms, when this information is available. Results In this paper, we propose a novel machine learning method that overcomes these limitations, by exploiting the knowledge about the GRN of a source organism for the reconstruction of the GRN of the target organism, by means of a novel transfer learning technique. Moreover, the proposed method is natively able to work in the positive-unlabeled setting, where no negative example is available, by fruitfully exploiting a (possibly large) set of unlabeled examples. In our experiments, we reconstructed the human GRN, by exploiting the knowledge of the GRN of Mus musculus. Results showed that the proposed method outperforms state-of-the-art approaches and identifies previously unknown functional relationships among the analyzed genes. Availability and implementation http://www.di.uniba.it/∼mignone/systems/biosfer/index.html. Supplementary information Supplementary data are available at Bioinformatics online.
Remote Sensing (RS) image classification has recently attracted great attention for its application in different tasks, including environmental monitoring, battlefield surveillance, and geospatial object detection. The best practices for these tasks often involve transfer learning from pre-trained Convolutional Neural Networks (CNNs). A common approach in the literature is employing CNNs for feature extraction, and subsequently train classifiers exploiting such features. In this paper, we propose the adoption of transfer learning by fine-tuning pre-trained CNNs for end-to-end aerial image classification. Our approach performs feature extraction from the fine-tuned neural networks and remote sensing image classification with a Support Vector Machine (SVM) model with linear and Radial Basis Function (RBF) kernels. To tune the learning rate hyperparameter, we employ a linear decay learning rate scheduler as well as cyclical learning rates. Moreover, in order to mitigate the overfitting problem of pre-trained models, we apply label smoothing regularization. For the fine-tuning and feature extraction process, we adopt the Inception-v3 and Xception inception-based CNNs, as well the residual-based networks ResNet50 and DenseNet121. We present extensive experiments on two real-world remote sensing image datasets: AID and NWPU-RESISC45. The results show that the proposed method exhibits classification accuracy of up to 98%, outperforming other state-of-the-art methods.
Smart grids are power grids where clients may actively participate in energy production, storage and distribution. Smart grid management raises several challenges, including the possible changes and evolutions in terms of energy consumption and production, that must be taken into account in order to properly regulate the energy distribution. In this context, machine learning methods can be fruitfully adopted to support the analysis and to predict the behavior of smart grids, by exploiting the large amount of streaming data generated by sensor networks. In this paper, we propose a novel change detection method, called ECHAD (Embedding-based CHAnge Detection), that leverages embedding techniques, one-class learning, and a dynamic detection approach that incrementally updates the learned model to reflect the new data distribution. Our experiments show that ECHAD achieves optimal performances on synthetic data representing challenging scenarios. Moreover, a qualitative analysis of the results obtained on real data of a real power grid reveals the quality of the change detection of ECHAD. Specifically, a comparison with stateof-the-art approaches shows the ability of ECHAD in identifying additional relevant changes, not detected by competitors, avoiding false positive detections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.