Variable Angle Tow (VAT) laminates offer a promising alternative to classical straight-fiber composites in terms of design and performance. However, analyzing these structures can be more complex due to the introduction of new design variables. Carrera’s unified formulation (CUF) has been successful in previous works for buckling, vibrational, and stress analysis of VAT plates. Typically, one-dimensional (1D) and two-dimensional (2D) CUF models are used, with a linear law describing the fiber orientation variation in the main plane of the structure. The objective of this article is to expand the CUF 2D plate finite elements family to perform free vibration analysis of composite laminated plate structures with curvilinear fibers. The primary contribution is the application of Reissner’s mixed variational theorem (RMVT) to a CUF finite element model. The principle of virtual displacements (PVD) and RMVT are both used as variational statements for the study of monolayer and multilayer VAT plate dynamic behavior. The proposed approach is compared to Abaqus three-dimensional (3D) reference solutions, classical theories and literature results to investigate the effectiveness of the developed models. The results demonstrate that mixed theories provide the best approximation of the reference solution in all cases.
Variable Angle Tow (VAT) laminates offer a promising alternative to classical straight fiber composites in terms of design and performance.
However, analyzing these structures can be more complex due to the introduction of new design variables.
Carrera's Unified Formulation (CUF) has been successful in previous works for buckling,
vibrational, and stress analysis of VAT plates.
Typically, one-dimensional (1D) and two-dimensional (2D) CUF models are used,
with a linear law describing the fiber orientation variation in the main plane of the structure.
The objective of this article is to expand the CUF 2D plate finite elements
family to perform free vibration analysis of composite laminated plate structures with curvilinear fibers.
The primary contribution is the application of Reissner's Mixed Variational Theorem (RMVT) to a CUF finite element model.
The Principle of Virtual Displacements (PVD) and RMVT are both used as variational statements for the study of monolayer and multilayer VAT plates dynamic behavior.
The proposed approach is compared to Abaqus three-dimensional (3D) reference solutions,
classical theories and literature results to investigate the effectiveness of the developed models.
Results demonstrate that mixed theories provide the best approximation of the reference solution in all cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.