In December 2019, an initial cluster of interstitial bilateral pneumonia emerged in Wuhan, China. A human-to-human transmission was assumed and a previously unrecognized entity, termed coronavirus disease-19 (COVID-19) due to a novel coronavirus (SARS-CoV-2) was described. The infection has rapidly spread out all over the world and Italy has been the first European country experiencing the endemic wave with unexpected clinical severity in comparison with Asian countries. It has been shown that SARS-CoV-2 utilizes angiotensin converting enzyme 2 (ACE2) as host receptor and host proteases for cell surface binding and internalization. Thus, a predisposing genetic background can give reason for interindividual disease susceptibility and/or severity. Taking advantage of the Network of Italian Genomes (NIG), here we mined whole-exome sequencing data of 6930 Italian control individuals from five different centers looking for ACE2 variants. A number of variants with a potential impact on protein stability were identified. Among these, three more common missense changes, p.(Asn720Asp), p.(Lys26Arg), and p.(Gly211Arg) were predicted to interfere with protein structure and stabilization. Rare variants likely interfering with the internalization process, namely p.(Leu351Val) and p.(Pro389His), predicted to interfere with SARS-CoV-2 spike protein binding, were also observed. Comparison of ACE2 WES data between a cohort of 131 patients and 258 controls allowed identifying a statistically significant (P value < 0.029) higher allelic variability in controls compared with patients. These findings suggest that a predisposing genetic background may contribute to the observed interindividual clinical variability associated with COVID-19, allowing an evidence-based risk assessment leading to personalized preventive measures and therapeutic options.
International audienceThe use of genetics and genomics within a wide range of health care settings requires health professionals to develop expertise in order to practise appropriately. There is a need for a common minimum standard of competence in genetics for health professionals in Europe but due to differences in professional education and regulation between European countries, setting curricula may not be practical. Core competences are used as a basis for health professional education in many fields and settings. An Expert Group working under the auspices of the EuroGentest project and European Society of Human Genetics Education Committee agreed that a pragmatic solution to the need to establish common standards for education and practice in genetic healthcare was to agree a set of core competences that could apply across Europe. These were agreed through an exhaustive process of consultation with relevant health professionals and patient groups. Sets of competences for practitioners working in primary, secondary and tertiary care have been agreed and were approved by the European Society of Human Genetics. The competences provide an appropriate framework for genetics education of health professionals across national boundaries and the suggested learning outcomes are available to guide development of curricula that are appropriate to the national context, educational system and healthcare setting of the professional involved. Collaboration between individuals from many European countries and professions has resulted in an adaptable framework for both pre-registration and continuing professional education. This competence framework has the potential to improve the quality of genetic healthcare for patients globally
Human amniotic fluid stem cells (hAFS) have shown a distinct secretory profile and significant regenerative potential in several preclinical models of disease. Nevertheless, little is known about the detailed characterization of their secretome. Herein we show for the first time that hAFS actively release extracellular vesicles (EV) endowed with significant paracrine potential and regenerative effect. c‐KIT+ hAFS were isolated from leftover samples of amniotic fluid from prenatal screening and stimulated to enhance EV release (24 hours 20% O2 versus 1% O2 preconditioning). The capacity of the c‐KIT+ hAFS‐derived EV (hAFS‐EV) to induce proliferation, survival, immunomodulation, and angiogenesis were investigated in vitro and in vivo. The hAFS‐EV regenerative potential was also assessed in a model of skeletal muscle atrophy (HSA‐Cre, Smn F7/F7 mice), in which mouse AFS transplantation was previously shown to enhance muscle strength and survival. hAFS secreted EV ranged from 50 up to 1,000 nm in size. In vitro analysis defined their role as biological mediators of regenerative, paracrine effects while their modulatory role in decreasing skeletal muscle inflammation in vivo was shown for the first time. Hypoxic preconditioning significantly induced the enrichment of exosomes endowed with regenerative microRNAs within the hAFS‐EV. In conclusion, this is the first study showing that c‐KIT+ hAFS dynamically release EV endowed with remarkable paracrine potential, thus representing an appealing tool for future regenerative therapy. Stem Cells Translational Medicine 2017;6:1340–1355
Duchenne and Becker muscular dystrophy (DMD and BMD, respectively) are allelic disorders with different clinical presentations and severity determined by mutations in the gene DMD, which encodes the sarcolemmal protein dystrophin. Diagnosis is based on clinical aspects and muscle protein analysis, followed by molecular confirmation. We revised the main aspects of the natural history of dystrophinopathies to define genotype-phenotype correlations in large patient cohorts with extended follow-up. We also specifically explored subjects carrying nucleotide substitutions in the DMD gene, a comparatively less investigated DMD/BMD subgroup. We studied 320 dystrophinopathic patients (205 DMD and 115 BMD), defining muscular, cardiac, respiratory, and cognitive involvement. We also subdivided patients according to the kind of molecular defect (deletions, duplications, nucleotide substitutions or other microrearrangements) and the mutation sites (proximal/distal to exon 45), studying phenotype-genotype correlations for each group. In DMD, mutation type did not influence clinical evolution; mutations located in distal regions (irrespective of their nature) are more likely to be associated with lower IQ levels (p = 0.005). BMD carrying proximal deletions showed a higher degree of cardiac impairment than BMD with distal deletions (p = 0.0046). In the BMD population, there was a strong correlation between the entity of muscle dystrophin deficiency and clinical course (p = 0.002). An accurate knowledge of natural history may help in the clinical management of patients. Furthermore, several clinical trials are ongoing or are currently planned, some of which aim to target specific DMD mutations: a robust natural history is therefore essential to correctly design these experimental trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.