The performance of the standard hierarchy of ab initio models--that is, Hartree-Fock theory, second-order Moller-Plesset theory, coupled-cluster singles-and-doubles theory, and coupled-cluster singles-doubles-approximate-triples theory--in combination with correlation-consistent basis sets is investigated for equilibrium geometries of molecules containing second-row elements. From an analysis on a collection of 31 molecules (yielding statistical samples of 41 bond distances and 13 bond angles), the statistical errors (mean deviation, mean absolute deviation, standard deviation, and maximum absolute deviation) are established at each level of theory. The importance of core correlation is examined by comparing calculations in the frozen-core approximation with calculations where all electrons are correlated.
We present an implementation of the polarizable continuum model for the calculation of solvent effects on electronic circular dichroism spectra. The computational model used is density functional theory in the length-gauge formulation, and gauge-origin independence is ensured through the use of London atomic orbitals. Results of calculations carried out for methyloxirane and bicyclic ketones, camphor, norcamphor, norbornenone, and fenchone are presented, and the theoretically obtained solvent effects are compared with experimental observations.
The absolute configuration of (S)-(-)-paraconic acid is correctly assigned on the basis of ab initio calculations of the specific optical rotation (OR) at the sodium D line, carried out both in vacuum and in methanol. Density functional theory (DFT) and Møller-Plesset second-order perturbation theory (MP2) are used to determine the most stable conformational structures, whose OR values are then calculated using DFT linear response theory and London atomic orbitals. The total OR is obtained by averaging these values using the population fractions determined from Boltzmann's statistics. The total OR of the MP2 structures has the correct sign both in vacuum and in solution, whereas only the solvent-relaxed DFT structures correctly reproduce the experimental sign. The strong solvent effect on the total OR is shown to arise primarily due to the variations in the relative energies of the various conformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.