Optical surfaces that can repel both water and oil have much potential for applications in a diverse array of technologies including self-cleaning solar panels, anti-icing windows and windshields for automobiles and aircrafts, low-drag surfaces, and antismudge touch screens. By exploiting a hierarchical geometry made of two-tier nanostructures, primary nanopillars of length scale ∼ 100-200 nm superposed with secondary branching nanostructures made of nanoparticles of length scale ∼ 10-30 nm, we have achieved static contact angles of more than 170° and 160° for water and oil, respectively, while the sliding angles were lower than 4°. At the same time, with respect to the initial flat bare glass, the nanotextured surface presented significantly reduced reflection (<0.5%), increased transmission (93.8% average over the 400 to 700 nm wavelength range), and very low scattering values (about 1% haze). To the authors' knowledge, these are the highest optical performances in conjunction with superomniphobicity reported to date in the literature. The primary nanopillars are monolithically integrated in the glass surface using lithography-free metal dewetting followed by reactive ion etching,1 while the smaller and higher surface area branching structure made of secondary nanoparticles are deposited by the NanoSpray2 combustion chemical vapor deposition (CCVD).
In this paper, we will review the state-of-the-art of LiNbO3 based integrated electro-optic modulators and will show how micro-structuring techniques such as etching, domain inversion and thin film processing can be used to realize new configurations which can take the performance to unprecedented levels. In particular, we will review recent results on the use of domain inversion on a micron scale and we report on the fabrication of a chirp-free modulator having ∼ 2 V switching voltage and bandwidth of 15 GHz designed by placing the waveguide arms of the Mach-Zehnder interferometer in opposite domain oriented regions. We also review some of the new modulation formats (e.g. DQPSK) that can represent an application development of the presented micro-structured devices. Finally, we address the issue of the integration of the modulator chip in a transmitter board comprising tunable laser, bias-control electronics and RF driver. The requirements of integration can even push further the reduction in size of modulator chips, thus making more crucial the use of micro-and nano-structuring techniques.Mach-Zehnder modulator exploiting domain inversion for ultralow voltage operation.
The influence of BaTiO(3) ferroelectric domain orientations for high efficiency electro-optic modulation has been thoroughly analyzed. The Mach-Zehnder modulator structure is based on a CMOS compatible silicon/BaTiO(3)/silicon slot waveguide that supports both TE and TM polarizations whereas the Pockels effect is exploited by the application of a horizontal electric field with lateral electrodes placed on top of the BaTiO(3) layer. The influence of the waveguide parameters has been optimized for each configuration and the lowest V(π) voltage combined with low losses has been determined. A V(π)L as low as 0.27 V·cm has been obtained for a-axis oriented BaTiO(3) and TE polarization by rotating the waveguide structure to an optimum angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.