The influence of BaTiO(3) ferroelectric domain orientations for high efficiency electro-optic modulation has been thoroughly analyzed. The Mach-Zehnder modulator structure is based on a CMOS compatible silicon/BaTiO(3)/silicon slot waveguide that supports both TE and TM polarizations whereas the Pockels effect is exploited by the application of a horizontal electric field with lateral electrodes placed on top of the BaTiO(3) layer. The influence of the waveguide parameters has been optimized for each configuration and the lowest V(π) voltage combined with low losses has been determined. A V(π)L as low as 0.27 V·cm has been obtained for a-axis oriented BaTiO(3) and TE polarization by rotating the waveguide structure to an optimum angle.
Barium titanate (BaTiO 3 or BTO) is currently one of the most promising ferroelectric materials for enabling Pockels modulation that is compatible with silicon photonic circuits. The relative permittivity of BTO has been characterized in thin films deposited on a silicon-on-insulator (SOI) substrate. High values between 800 and 1600 have been estimated at 20 GHz. Furthermore, no substantial difference has been obtained by using BTO grown by molecular beam epitaxy and sputtering. The obtained permittivity has been used to properly design the RF electrodes for high-speed modulation in hybrid BTO/Si devices. Electrodes have been fabricated and the possibility of achieving modulation bandwidths up to 40 GHz has been demonstrated. The bandwidth is limited by the microwave propagation losses and, in this case, different losses have been measured depending on the BTO growth process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.