Under the usual conditions, the Pd-catalyzed arylation does not involve an electrophilic aromatic substitution reaction. On the basis of DFT calculations, we propose a mechanism for the Pd-catalyzed arylation that involves a proton abstraction by a carbonate or related ligand and that provides a satisfactory explanation for the experimental data.
The regioselectivity observed in the intramolecular palladium-catalyzed arylation of substituted bromobenzyldiarylmethanes as well as theoretical results demonstrate that the Pd-catalyzed arylation proceeds by a mechanism involving a proton abstraction by the carbonate, or a related basic ligand. The reaction is facilitated by electron-withdrawing substituents on the aromatic ring, which is inconsistent with an electrophilic aromatic-substitution mechanism. The more important directing effect is exerted by electron-withdrawing substituents ortho to the reacting site.
The rhodium-catalyzed, terminal-selective borylation of alkanes has been used to modify polyolefins. The functionalization of two materials, polyethylethylene (PEE) of molecular weights 1200 and 37 000, was conducted by combining bis-pinacoldiboron and 2.5 mol % [Cp*RhCl2]2 in neat polymer and heating at 150 degrees C. This procedure causes the polymer and boron reagent to melt, the catalyst to dissolve, and the reaction to form material with boryl groups at the terminal position of the polymer side chains. Oxidation of the borylated material generated polymers with hydroxyl groups at the terminal position of the side chains. The functionalization was conducted at various ratios of boron reagent to monomer. The resulting borylated and subsequent hydoxylated materials were characterized by 1H and 13C NMR spectroscopy, as well as MALDI-MS and GPC. Little change in polymer molecular weight and polydispersity was observed, and these data indicate that scission of the main chain does not occur. Measurements of the Tg of the polymers showed in increase in Tg of up to 50 degrees C after the modification. Thus, homogeneous, catalytic, selective alkane functionalization can be used to modify polymer properties.
Complexes [AuCl{C(NHR)(NHR 0 )}] and [AuCl{C(NHR)(NEt 2 )}] (R= t Bu, p-Tol, Xylyl, p-C 6 H 4 -COOH, p-C 6 H 4 COOEt, R 0 = Me, n Bu, i Pr, n heptyl, p-Tol) have been prepared by reaction of the corresponding isocyanogold complexes [AuCl(CNR)] with either primary amines or diethylamine. All the prepared carbenes are reactive and highly selective catalysts for skeletal rearrangement, methoxycyclization of 1,6-enynes, and other mechanistically related gold-catalyzed transformations. Overall, these easily accessible nitrogen acyclic carbene (NAC) gold complexes were not second to NHC complexes and were advantageous to obtain different products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.