The regioselectivity observed in the intramolecular palladium-catalyzed arylation of substituted bromobenzyldiarylmethanes as well as theoretical results demonstrate that the Pd-catalyzed arylation proceeds by a mechanism involving a proton abstraction by the carbonate, or a related basic ligand. The reaction is facilitated by electron-withdrawing substituents on the aromatic ring, which is inconsistent with an electrophilic aromatic-substitution mechanism. The more important directing effect is exerted by electron-withdrawing substituents ortho to the reacting site.
Quantum states of a trinaphthylene molecule were manipulated by putting its naphthyl branches in contact with single Au atoms. One Au atom carries 1-bit of classical information input that is converted into quantum information throughout the molecule. The Au-trinaphthylene electronic interactions give rise to measurable energy shifts of the molecular electronic states demonstrating a NOR logic gate functionality. The NOR truth table of the single molecule logic gate was characterized by means of scanning tunnelling spectroscopy.
In this work, we have studied the adsorption and diffusion of large functionalized organic molecules on an insulating ionic surface at room temperature using a noncontact atomic force microscope (NC-AFM) and theoretical modeling. Custom designed syn-5,10,15-tris(4-cyanophenylmethyl)truxene molecules are adsorbed onto the nanoscale structured KBr(001) surface at low coverages and imaged with atomic and molecular resolution with the NC-AFM. The molecules are observed rapidly diffusing along the perfect monolayer step edges and immobilized at monolayer kink sites. Extensive atomistic simulations elucidate the mechanisms of adsorption and diffusion of the molecule on the different surface features. The results of this study suggest methods of controlling the diffusion of adsorbates on insulating and nanostructured surfaces.
We report on the conformation and self-assembly properties of meso-tetramesitylporphyrin on Cu(100). The results show that the presence of the mesityl groups limits the interaction between the porphyrin ring and the copper surface, contributing to the high porphyrin mobility at room temperature. At low temperatures it is the substrate which determines the molecule orientation. The intermolecular interaction is also very weak, and only for high coverages do the porphyrins self-assemble to form large islands with two different mirror symmetric unit cells. The porphyrins can be Fe metalated by sublimation of Fe at room temperature on a porphyrin overlayer deposited on the copper surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.