Quantitative proteome analysis of four developmental stages of pericarp tissues of the açaí berry (Euterpe oleracea Mart.) was performed by the isobaric labeling of peptides with iTRAQ 4-plex, hydrophilic interaction liquid chromatography pre-fractionation of labeled peptides, and high-performance mass spectrometry analysis. This analysis resulted in the identification of 4286 proteins, of which 476 presented differential abundance between the stages. The differential abundance of these proteins was seen to be coordinated with the metabolic demands during cell division, lignification, and cell expansion at developmental stages 1 and 2 as well as phenolic acid accumulation and metabolic changes in the fruit maturation at developmental stages 3 and 4. The distinct accumulation of anthocyanins observed in the pericarp at developmental stage 4 was correlated with the increase in abundance of some key biosynthetic enzymes, such as leucoanthocyanidin dioxygenase, anthocyanidin O-3-glycosyltransferase, and UDP-glycosyltransferase. Here, evidence is also provided for the presence in the açaí berry of secondary metabolites not previously described in açaí, such as pterostilbene, matairesinol, and furaneol. Together, these results will pave the way for studies aimed at the genetic improvement of the nutritional properties of this important fruit crop.
Background Casbene synthase (CS) is responsible for the first committed step in the biosynthesis of phorbol esters (PE) in the Euphorbiaceae. PE are abundant in the seeds of the biofuel crop Jatropha curcas and its toxicity precludes the use of the protein-rich cake obtained after oil extraction as an animal feed and the toxicity of the fumes derived from burning PE containing biofuel is also a matter of concern. This toxicity is a major hindrance to exploit the potential of this crop as a source of raw material to produce biodiesel. For this reason, the current research on J. curcas is mainly focused on the understanding of the biosynthesis and site of synthesis of PE, as an avenue for the development of genotypes unable to synthesize PE in its seeds. Results Here, we present targeted proteomics assays (SRM and PRM) to detect and quantify CS in leaves, endosperm, and roots of two J. curcas genotypes with contrasting levels of PE. These assays were based on the use of reference isotopic labeled synthetic peptides (ILSP) predicted from 12 gene models of CS from the J. curcas genome. Conclusion Our targeted proteomics methods were able to detect and quantify, for the first time, CS gene products and demonstrate the distribution of CS isoforms only in roots from J. curcas genotypes with a high and low concentration of PE. These methods can be expanded to monitor CS, at the protein level, in different tissues and genotypes of J. curcas.
Açaí palm (Euterpe oleracea Mart.) seeds are a rich source of mannans, which can be used to generate bioethanol or be converted to high‐value D‐mannose, in addition to being a source of polyphenols with beneficial health properties. Here, we present a quantitative proteome dataset of açaí seeds at four stages of development (S1, S2, S3, and S4 stages), in which 2465 high confidence proteins were identified and 524 of them show statistically different abundance profiles during development. Several enzymes involved in the biosynthesis of nucleotide‐sugars were quantified, especially those dedicated to the formation of GDP‐mannose, which showed an increase in abundance between stages S1 and S3. Our data suggest that linear mannans found abundantly in endosperm cell walls are initially deposited as galactomannans, and during development lose the galactosyl groups. Two isoforms of alpha‐galactosidase enzymes showed significantly increased abundances in the S3 and S4 stages. Additionally, we quantified the enzymes participating in the central pathway of flavonoid biosynthesis responsible for the formation of catechin and epicatechin, which are subunits of procyanidins, the main class of polyphenols in the açaí seeds. These proteins showed the same pattern of deposition, in which higher abundances were seen in the S1 and S2 stages.
We investigated changes in the phenolic profile and antioxidant properties in the extracts of developing seeds of acai (Euterpe oleracea). Four developmental stages were evaluated, with earlier stages displaying higher antioxidant activity and polyphenols content, while mass spectrometry analysis identified procyanidins (PCs) as the major components of the extracts in all stages. B-type PCs varied from dimers to decamers, with A-type linkages in a smaller number. Extracted PCs decreased in average length from 20.5 to 10.1 along seed development. PC composition indicated that (−)-epicatechin corresponded to over 95% of extension units in all stages, while (+)-catechin presence as the starter unit increased from 42 to 78.8% during seed development. This variation was correlated to the abundance of key enzymes for PC biosynthesis during seed development. This study is the first to report PC content and composition variations during acai ́seed development, which can contribute to studies on the plant's physiology and biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.