Drug discovery and development pipelines are long, complex and depend on numerous factors. Machine learning (ML) approaches provide a set of tools that can improve discovery and decision making for well-specified questions with abundant, high-quality data. Opportunities to apply ML occur in all stages of drug discovery. Examples include target validation, identification of prognostic biomarkers and analysis of digital pathology data in clinical trials. Applications have ranged in context and methodology, with some approaches yielding accurate predictions and insights. The challenges of applying ML lie primarily with the lack of interpretability and repeatability of ML-generated results, which may limit their application. In all areas, systematic and comprehensive high-dimensional data still need to be generated. With ongoing efforts to tackle these issues, as well as increasing awareness of the factors needed to validate ML approaches, the application of ML can promote data-driven decision making and has the potential to speed up the process and reduce failure rates in drug discovery and development.
Patient-derived tumor xenograft (PDX) mouse models have emerged as an important oncology research platform to study tumor evolution, mechanisms of drug response and resistance, and tailoring chemotherapeutic approaches for individual patients. The lack of robust standards for reporting on PDX models has hampered the ability of researchers to find relevant PDX models and associated data. Here we present the PDX models Minimal Information standard (PDX-MI) for reporting on the generation, quality assurance and use of PDX models. PDX-MI defines the minimal information for describing the clinical attributes of a patient’s tumor, the processes of implantation and passaging of tumors in a host mouse strain, quality assurance methods, and the use PDX models in cancer research. Adherence to PDX-MI standards will facilitate accurate search results for oncology models and their associated data across distributed repository databases and promote reproducibility in research studies using these models.
Bioactive molecules such as drugs, pesticides and food additives are produced in large numbers by many commercial and academic groups around the world. Enormous quantities of data are generated on the biological properties and quality of these molecules. Access to such data - both on licensed and commercially available compounds, and also on those that fail during development - is crucial for understanding how improved molecules could be developed. For example, computational analysis of aggregated data on molecules that are investigated in drug discovery programmes has led to a greater understanding of the properties of successful drugs. However, the information required to perform these analyses is rarely published, and when it is made available it is often missing crucial data or is in a format that is inappropriate for efficient data-mining. Here, we propose a solution: the definition of reporting guidelines for bioactive entities - the Minimum Information About a Bioactive Entity (MIABE) - which has been developed by representatives of pharmaceutical companies, data resource providers and academic groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.