Real-world observable physical and chemical characteristics are increasingly being calculated from the 3D structures of biomolecules. Methods for calculating pKa values, binding constants of ligands, and changes in protein stability are readily available, but often the limiting step in computational biology is the conversion of PDB structures into formats ready for use with biomolecular simulation software. The continued sophistication and integration of biomolecular simulation methods for systems- and genome-wide studies requires a fast, robust, physically realistic and standardized protocol for preparing macromolecular structures for biophysical algorithms. As described previously, the PDB2PQR web server addresses this need for electrostatic field calculations (Dolinsky et al., Nucleic Acids Research, 32, W665–W667, 2004). Here we report the significantly expanded PDB2PQR that includes the following features: robust standalone command line support, improved pKa estimation via the PROPKA framework, ligand parameterization via PEOE_PB charge methodology, expanded set of force fields and easily incorporated user-defined parameters via XML input files, and improvement of atom addition and optimization code. These features are available through a new web interface (http://pdb2pqr.sourceforge.net/), which offers users a wide range of options for PDB file conversion, modification and parameterization.
Drug discovery and development pipelines are long, complex and depend on numerous factors. Machine learning (ML) approaches provide a set of tools that can improve discovery and decision making for well-specified questions with abundant, high-quality data. Opportunities to apply ML occur in all stages of drug discovery. Examples include target validation, identification of prognostic biomarkers and analysis of digital pathology data in clinical trials. Applications have ranged in context and methodology, with some approaches yielding accurate predictions and insights. The challenges of applying ML lie primarily with the lack of interpretability and repeatability of ML-generated results, which may limit their application. In all areas, systematic and comprehensive high-dimensional data still need to be generated. With ongoing efforts to tackle these issues, as well as increasing awareness of the factors needed to validate ML approaches, the application of ML can promote data-driven decision making and has the potential to speed up the process and reduce failure rates in drug discovery and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.