The human APOBEC3 proteins are a family of DNA-editing enzymes that play an important role in the innate immune response and have broad activity against retroviruses and retrotransposons. APOBEC3G is a member of this family that inhibits HIV-1 replication in the absence of the viral infectivity factor Vif. Inhibition of HIV replication occurs by both deamination of viral single-stranded DNA and a deamination-independent mechanism. Efficient deamination requires rapid binding to and dissociation from ssDNA. However, a relatively slow dissociation rate is required for the proposed deaminase-independent roadblock mechanism in which APOBEC3G binds the viral template strand and blocks reverse transcriptase-catalyzed DNA elongation. Here we show that APOBEC3G initially binds ssDNA with rapid on-off rates and subsequently converts to a slowly dissociating mode. In contrast, an oligomerization-deficient APOBEC3G mutant did not exhibit a slow off rate. We propose that catalytically active monomers or dimers slowly oligomerize on the viral genome and inhibit reverse transcription.
Retroviral nucleocapsid (NC) proteins are molecular chaperones that facilitate nucleic acid (NA) remodeling events critical in viral replication processes such as reverse transcription. Surprisingly, the NC protein from human T-cell leukemia virus type 1 (HTLV-1) is an extremely poor NA chaperone. Using bulk and single molecule methods, we find that removal of the anionic C-terminal domain (CTD) of HTLV-1 NC results in a protein with chaperone properties comparable with that of other retroviral NCs. Increasing the ionic strength of the solution also improves the chaperone activity of full-length HTLV-1 NC. To determine how the CTD negatively modulates the chaperone activity of HTLV-1 NC, we quantified the thermodynamics and kinetics of wild-type and mutant HTLV-1 NC/NA interactions. The wild-type protein exhibits very slow dissociation kinetics, and removal of the CTD or mutations that eliminate acidic residues dramatically increase the protein/DNA interaction kinetics. Taken together, these results suggest that the anionic CTD interacts with the cationic N-terminal domain intramolecularly when HTLV-1 NC is not bound to nucleic acids, and similar interactions occur between neighboring molecules when NC is NA-bound. The intramolecular N-terminal domain-CTD attraction slows down the association of the HTLV-1 NC with NA, whereas the intermolecular interaction leads to multimerization of HTLV-1 NC on the NA. The latter inhibits both NA/NC aggregation and rapid protein dissociation from singlestranded DNA. These features make HTLV-1 NC a poor NA chaperone, despite its robust duplex destabilizing capability. Nucleic acid (NA)5 chaperones are proteins that facilitate NA remodeling and annealing (1). Retroviral nucleocapsid proteins (NC) are essential NA chaperones (2-4) that facilitate many steps in the retroviral life cycle, including dimerization of the RNA genome (5-10), reverse transcription (11-14), annealing of the tRNA primer to the primer-binding site (7,(15)(16)(17)(18)(19)(20)(21)(22), and integration of viral DNA into the host genome (23-27). Previous work has shown that NCs from different retroviruses display a wide range of NA chaperone activities (28). A modelannealing reaction involving complementary trans-activation response element (TAR) RNA and DNA hairpins derived from the R region of the HIV-1 genome was used to characterize NCs from human immunodeficiency virus, type 1 (HIV-1), Rous sarcoma virus, murine leukemia virus, and human T-cell leukemia virus, type 1 (HTLV-1) (28). Surprisingly, the annealing activity of these NCs varies by 5 orders of magnitude; HIV-1 NC was the most efficient chaperone and HTLV-1 NC was the least efficient. A single molecule (SM) Förster resonance energy transfer (FRET) study confirmed the observation that HTLV-1 NC is a very poor NA chaperone (29).To determine the physical origin of these differences in retroviral NC chaperone activity, we measured the NA aggregation and duplex destabilization activity for each protein (28). Both of these capabilities, together with rap...
Feline immunodeficiency virus (FIV) is a retrovirus that infects domestic cats, and is an excellent animal model for human immunodeficiency virus type 1 (HIV-1) pathogenesis. The nucleocapsid (NC) protein is critical for replication in both retroviruses. FIV NC has several structural features that differ from HIV-1 NC. While both NC proteins have a single conserved aromatic residue in each of the two zinc fingers, the aromatic residue on the second finger of FIV NC is located on the opposite C-terminal side relative to its location in HIV-1 NC. In addition, whereas HIV-1 NC has a highly charged cationic N-terminal tail and a relatively short C-terminal extension, the opposite is true for FIV NC. To probe the impact of these differences on the nucleic acid (NA) binding and chaperone properties of FIV NC, we carried out ensemble and single-molecule assays with wild-type (WT) and mutant proteins. The ensemble studies show that FIV NC binding to DNA is strongly electrostatic, with a higher effective charge than that observed for HIV-1 NC. The C-terminal basic domain contributes significantly to the NA binding capability of FIV NC. In addition, the non-electrostatic component of DNA binding is much weaker for FIV NC than for HIV-1 NC. Mutation of both aromatic residues in the zinc fingers to Ala (F12A/W44A) further increases the effective charge of FIV NC and reduces its non-electrostatic binding affinity. Interestingly, switching the location of the C-terminal aromatic residue to mimic the HIV-1 NC sequence (N31W/W44A) reduces the effective charge of FIV NC and increases its non-electrostatic binding affinity to values similar to HIV-1 NC. Consistent with the results of these ensemble studies, single-molecule DNA stretching studies show that while WT FIV NC has reduced stacking capability relative to HIV-1 NC, the aromatic switch mutant recovers the ability to intercalate between the DNA bases. Our results demonstrate that altering the position of a single aromatic residue switches the binding mode of FIV NC from primarily electrostatic binding to more non-electrostatic binding, conferring upon it NA interaction properties comparable to that of HIV-1 NC.
The matrix (MA) domain of retroviral Gag proteins plays a crucial role in virion assembly. In human immunodeficiency virus type 1 (HIV-1), a lentivirus, the presence of phosphatidylinositol-(4,5)-bisphosphate triggers a conformational change allowing the MA domain to bind the plasma membrane (PM). In this study, the MA protein from bovine leukemia virus (BLV) was used to investigate the mechanism of viral Gag binding to the membrane during replication of a deltaretrovirus. Fluorescence spectroscopy was used to measure the binding affinity of MA for two RNA constructs derived from the BLV genome as well as for single-stranded DNA (ssDNA). The importance of electrostatic interactions and the ability of inositol hexakisphosphate (IP6) to compete with nucleic acids for binding to MA were also investigated. Our data show that IP6 effectively competes with RNA and DNA for BLV MA binding, while [NaCl] of greater than 100 mM is required to produce any observable effect on DNA-MA binding. These results suggest that BLV assembly may be highly dependent on the specific interaction of the MA domain with components of the PM, as observed previously with HIV-1. The mode of MA binding to nucleic acids and the implications for BLV assembly are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.