HIV-1-infected persons are at higher risk of lower respiratory tract infections than HIV-1-uninfected individuals. This suggests strongly that HIV-infected persons have specific impairment of pulmonary immune responses, but current understanding of how HIV alters pulmonary immunity is incomplete. Alveolar macrophages (AMs), comprising small and large macrophages, are major effectors of innate immunity in the lung. We postulated that HIV-1 impairs pulmonary innate immunity through impairment of AM physiological functions. AMs were obtained by bronchoalveolar lavage from healthy, asymptomatic, antiretroviral therapy-naive HIV-1-infected and HIV-1-uninfected adults. We used novel assays to detect in vivo HIV-infected AMs and to assess AM functions based on the HIV infection status of individual cells. We show that HIV has differential effects on key AM physiological functions, whereby small AMs are infected preferentially by the virus, resulting in selective impairment of phagocytic function. In contrast, HIV has a more generalized effect on AM proteolysis, which does not require direct viral infection. These findings provide new insights into how HIV alters pulmonary innate immunity and the phenotype of AMs that harbors the virus. They underscore the need to clear this HIV reservoir to improve pulmonary immunity and reduce the high incidence of lower respiratory tract infections in HIV-1-infected individuals.
These data reveal the persistently poor control of pneumococcal colonization in HIV-infected adults following immune ART-mediated reconstitution, highlighting a potential reservoir for person-to-person spread and vaccine escape. Novel approaches to control colonization either through vaccination or through improvements in the quality of immune reconstitution are required.
To counteract the serious health threat posed by known and novel viral pathogens, drugs that target a variety of viruses through a common mechanism have attracted recent attention due to their potential in treating (re)emerging infections, for which direct-acting antivirals are not available. We found that labyrinthopeptins A1 and A2, the prototype congeners of carbacyclic lanthipeptides, inhibit the proliferation of diverse enveloped viruses, including dengue virus, Zika virus, West Nile virus, hepatitis C virus, chikungunya virus, Kaposi’s sarcoma-associated herpesvirus, cytomegalovirus, and herpes simplex virus, in the low micromolar to nanomolar range. Mechanistic studies on viral particles revealed that labyrinthopeptins induce a virolytic effect through binding to the viral membrane lipid phosphatidylethanolamine (PE). These effects are enhanced by a combined equimolar application of both labyrinthopeptins, and a clear synergism was observed across a concentration range corresponding to 10% to 90% inhibitory concentrations of the compounds. Time-resolved experiments with large unilamellar vesicles (LUVs) reveal that membrane lipid raft compositions (phosphatidylcholine [PC]/PE/cholesterol/sphingomyelin at 17:10:33:40) are particularly sensitive to labyrinthopeptins in comparison to PC/PE (90:10) LUVs, even though the overall PE amount remains constant. Labyrinthopeptins exhibited low cytotoxicity and had favorable pharmacokinetic properties in mice (half-life [t1/2] = 10.0 h), which designates them promising antiviral compounds acting by an unusual viral lipid targeting mechanism. IMPORTANCE For many viral infections, current treatment options are insufficient. Because the development of each antiviral drug is time-consuming and expensive, the prospect of finding broad-spectrum antivirals that can fight multiple, diverse viruses—well-known viruses as well as (re)emerging species—has gained attention, especially for the treatment of viral coinfections. While most known broad-spectrum agents address processes in the host cell, we found that targeting lipids of the free virus outside the host cell with the natural products labyrinthopeptin A1 and A2 is a viable strategy to inhibit the proliferation of a broad range of viruses from different families, including chikungunya virus, dengue virus, Zika virus, Kaposi’s sarcoma-associated herpesvirus, and cytomegalovirus. Labyrinthopeptins bind to viral phosphatidylethanolamine and induce virolysis without exerting cytotoxicity on host cells. This represents a novel and unusual mechanism to tackle medically relevant viral infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.