We present measurements of the effect of first-generation secondary organic aerosol (SOA) material on the growth of ∼10 nanometer diameter seed particles composed of sulfuric acid and water. Experiments were performed in an atmospheric pressure, vertically aligned flow reactor where OH was produced from HONO photolysis in the presence of either SO 2 or a monoterpene. For typical conditions, organic compounds at ∼300 ppbv are exposed to photooxidation for a time of ∼80 s at a [OH] of about 6 × 10 6 cm −3 : thus, oxidation products have minimal OH exposure. The measured size changes of the sulfuric acid seed particles can then be attributed to the uptake of firstgeneration products. Along with descriptions of the apparatus and the procedure, the analysis to obtain SOA yields by comparing them to growth with H 2 SO 4 (g) is detailed. Results from photooxidation experiments of αpinene, limonene, and myrcene give SOA yields of 0.040, 0.084, and 0.16, respectively. These SOA yields roughly double with each addition of a double bond to the compound. The αpinene and limonene results are in accord with the results of many previous SOA experiments, while the myrcene SOA yield stands alone. Photooxidation of myrcene also led to significant nucleation, and the species responsible is comparable to H 2 SO 4 at a 35% relative humidity in its nucleation capability.
The effect of precursor molecular structural features on secondary organic aerosol (SOA) growth was investigated for a number of precursor functional groups. SOA yields were determined for straight chain alkanes, some oxygenated, up to highly functionalized hydrocarbons, the largest being β-caryophyllene. Organic SOA yield was determined by comparing to standard particle size changes with SO2 in a photolytic flow reactor. SOA formation was initiated with OH radicals from HONO photolysis and continued with NO and NO2 present at single-digit nmol/mol levels. Seed particles of ∼10 nm diameter grew by condensation of SOA material and growth was monitored with a nanoparticle sizing system. Cyclic compounds dominate as the highest SOA yielding structural feature, followed by C-10 species with double bonds, with linear alkanes and isoprene most ineffective. Carbonyls led to significant increases in growth compared to the alkanes while alcohols, triple-bond compounds, aromatics, and epoxides were only slightly more effective than alkanes at producing SOA. When more than one double bond is present, or a double bond is present with another functional group as seen with 1, 2-epoxydec-9-ene, SOA yield is notably increased. Placement of the double bond is important as well with β-pinene having an SOA yield approximately 5 times that of α-pinene. In our photolytic flow reactor, first-generation oxidation products are presumed to be the primary species contributing to SOA thus the molecular structure of the precursor is determinant. We also conducted proton-transfer mass spectrometry measurements of α-pinene photooxidation and significant signals were observed at masses for multifunctional nitrates and possibly peroxy radicals. The mass spectrometer measurements were also used to estimate a HONO photolysis rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.