Golgi apparatus (GA) is a center for lipid metabolism and the final target of ceramide pathway, which may result in apoptosis. In this work localization of highly hydrophobic hypericin is followed by time-resolved imaging of NBDC (fluorescent ceramide) in U87 MG glioma cells. Decrease of NBDC fluorescence lifetimes in cells indicates that hypericin can also follow this pathway. It is known that both, ceramide and hypericin can significantly influence protein kinase C (PKC) activity. Western blotting analysis shows increase of PKCδ autophosphorylation at Ser645 (p(S645)PKCδ) in glioma cells incubated with 500 nM hypericin and confocal-fluorescence microscopy distinguishes p(S645)PKCδ localization between GA related compartments and nucleus. Experimental and numerical methods are combined to study p(S645)PKCδ in U87 MG cell line. Image processing based on conceptual qualitative description is combined with numerical treatment via simple exponential saturation model which describes redistribution of p(S645)PKCδ between nucleus and GA related compartments after hypericin administration. These results suggest, that numerical methods can significantly improve quantification of biomacromolecules (p(S645)PKCδ) directly from the fluorescence images and such obtained outputs are complementary if not equal to typical used methods in biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.