Understanding and quantification of phosphorus (P) fluxes are key requirements for predictions of future forest ecosystems changes as well as for transferring lessons learned from natural ecosystems to croplands and plantations. This review summarizes and evaluates the recent knowledge on mechanisms, magnitude, and relevance by which dissolved and colloidal inorganic and organic P forms can be translocated within or exported from forest ecosystems. Attention is paid to hydrological pathways of P losses at the soil profile and landscape scales, and the subsequent influence of P on aquatic ecosystems. New (unpublished) data from the German Priority Program 1685 ''Ecosystem Nutrition: Forest Strategies for limited Phosphorus Resources'' were added to provide up-to-date flux-based information. Nitrogen (N) additions increase the release of water-transportable P forms. Most P found in percolates and pore waters belongs to the so-called dissolved organic P (DOP) fractions, rich in orthophosphate-monoesters and also containing some orthophosphate-diesters. Total solution P concentrations range from ca. 1 to 400 μg P L -1 , with large variations among forest stands. Recent sophisticated analyses revealed that large portions of the DOP in forest stream water can comprise natural nanoparticles and fine colloids which under extreme conditions may account for 40-100% of the P losses. Their translocation within preferential flow passes may be rapid, mediated by storm events. The potential total P loss through leaching into subsoils and with streams was found to be less than 50 mg P m -2 a -1 , suggesting effects on ecosystems at centennial to millennium scale. All current data are based on selected snapshots only. Quantitative measurements of P fluxes in temperate forest systems are nearly absent in the literature, probably due to main research focus on the C and N cycles. Therefore, we lack complete ecosystem-based assessments of dissolved and colloidal P fluxes within and from temperate forest systems. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. Forest phosphorus cycle during ecosystem developmentForests are complex biogeochemical systems in which nutrient cycles readily change and become re-adjusted upon interactions with biotic and abiotic controls over diurnal, annual, decadal, centennial, and longer timescales (Hedin et al., 2003). Phosphorus (P) is an essential element for all living organisms. Modern agriculture avoids P limitation of primary production by continuous application of fertilizers, while forest ecosystems have developed efficient strategies for adapting to low P supply (Elser et al., 2007;Ilg et al., 2009;Rennenberg and Schmidt, 2010;Hinsinger et al., 2011). Increasing production of forests biomass in response to high atmospheric nitrogen (N) input and climate c...
Carbon (C), nitrogen (N), and phosphorus (P) become released in inorganic or organic forms during decomposition of soil organic matter (SOM). Environmental perturbations, such as drying and rewetting, alter the cycling of C, N, and P. Our study aimed at identifying the patterns and controls of C, N, and P release in soils under beech forests. We exposed organic and mineral horizons from a nutrient availability gradient in Germany to permanent moist conditions or dry spells in microcosms and quantified releases of inorganic and organic C, N, and P. Under moist conditions, mobilization of DOC, DON, and DOP were interrelated and depended on the C:N:P ratio of SOM, whilst net mineralization rates of C, N, and P correlated poorly. Mineralization of C decreased with soil depth from Oi to A horizons, reflecting the increasing SOM stability. Net mineralization of N and P showed divergent depth patterns. In the Oi horizon, net mineralization was smaller for N than for C and P, indicating more pronounced microbial immobilization for N than for P. In A horizons, net mineralization of P was less than of N, very likely because of strong sorption of released phosphate by mineral phases. Counterintuitively, net P mineralization in A horizons increased toward P-poor sites, probably due to decreasing contents of clay and pedogenic oxides, and thus, declining P sorption. Drying and rewetting caused stronger release of inorganic and organic P, and organic N than of inorganic C and inorganic N, most likely by lysis of microbial biomass with tight C:N:P ratios. Due to the divergent patterns in N and P cycling, the organic layer seems more crucial for net mineralization of P than the mineral soil; for N the mineral soil appears more important. Consequently, the loss of the organic layer would deteriorate P nutrition, in particular at nutrient-poor sites. Overall, our results indicate that the cycling of C, N, and P in soil is not directly coupled because of the different microbial immobilization and, in the mineral soil, differential sorption of inorganic N and P. This may ultimately cause imbalances in N and P nutrition of forests.
Phosphomonoesterases play an important role in the soil phosphorus (P) cycle since they hydrolyze P monoester to phosphate. Their activity is generally measured in soil extracts, and thus, it remains uncertain how mobile these enzymes are and to which extent they can be translocated within the soil profile. The presence of phosphomonoesterases in soil solutions potentially affects the share of labile dissolved organic P (DOP), which in turn would affect P leaching. Our study aimed at assessing the production and leaching of phosphomonoesterases from organic layers and topsoil horizons in forest soils and its potential effect on dissolved P forms in leachates obtained from zero-tension lysimeters. We measured phosphomonoesterase activities in leached soil solutions and compared it with those in water extracts from litter, Oe/Oa, and A horizons of two beech forests with a contrasting nitrogen (N) and P availability, subjected to experimental N × P fertilization. In addition, we determined phosphate and DOP. In soil solutions leached from litter, Oe/Oa, and A horizons, phosphomonoesterase activities ranged from 2 to 8 μmol L–1 h–1 during summer, but remained below detection limits in winter. The summer values represent 0.1–1% of the phosphomonoesterase activity in soil extracts, indicating that enzymes can be translocated from organic layers and topsoils to greater soil depths. Activities of phosphomonoesterases obtained by water extracts were greater in the organic layer of the P-poor site, while activities of those in soil solutions were similar at the two sites. Nitrogen addition increased phosphomonoesterase activities in leached soil solutions of the organic layer of the N- and P-poor soil. Using a modeling approach, we estimated that approx. 76% of the initial labile DOP was hydrolyzed to dissolved inorganic P within the first 24 h. Back calculations from measured labile DOP revealed an underestimation of approx. 15% of total dissolved P, or 0.03 mg L–1. The observed leaching of phosphomonoesterases implies that labile organic P could be hydrolyzed in deeper soil horizons and that extended sample storage leads to an underestimation of the contribution of DOP to total dissolved P leaching. This has been neglected in the few field studies measuring DOP leaching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.