Whether or how the activation of Lck and Fyn during T cell receptor (TCR) signaling is coordinated, and their delivery of function integrated, is unknown. Here we show that lipid rafts function to segregate Lck and Fyn in T cells before activation. Coaggregation of TCR and CD4 leads to Lck activation within seconds outside lipid rafts, followed by its translocation into lipid rafts and the activation of colocalized Fyn. Genetic evidence demonstrates that Fyn activation is strictly dependent on receptor-induced translocation of Lck. These results characterize the interdependence of Lck and Fyn function and establish the spatial and temporal distinctions of their roles in the cellular activation process.
The Wiskott-Aldrich syndrome protein (WASp) plays a major role in coupling T cell antigen receptor (TCR) stimulation to induction of actin cytoskeletal changes required for T cell activation. Here, we report that WASp inducibly binds the sorting nexin 9 (SNX9) in T cells and that WASp, SNX9, p85, and CD28 colocalize within clathrin-containing endocytic vesicles after TCR/CD28 costimulation. SNX9, implicated in clathrin-mediated endocytosis, binds WASp via its SH3 domain and uses its PX domain to interact with the phosphoinositol 3-kinase regulatory subunit p85 and product, phosphoinositol (3,4,5)P 3. The data reveal ligationinduced CD28 endocytosis to be clathrin-and phosphoinositol 3-kinase-dependent and TCR/CD28-evoked CD28 internalization and NFAT activation to be markedly enhanced by SNX9 overexpression, but severely impaired by expression of an SNX9 mutant (SNX9⌬PX) lacking p85-binding capacity. CD28 endocytosis and CD28-evoked actin polymerization also are impaired in WASpdeficient T cells. These findings suggest that SNX9 couples WASp to p85 and CD28 so as to link CD28 engagement to its internalization and to WASp-mediated actin remodeling required for CD28 cosignaling. Thus, the WASp/SNX9/p85/CD28 complex enables a unique interface of endocytic, actin polymerizing, and signal transduction pathways required for CD28-mediated T cell costimulation.actin cytoskeleton ͉ costimulation ͉ lymphocyte activation ͉ signaling
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.