In addition to good mechanical properties needed for three-dimensional tissue engineering, the combination of alginate dialdehyde, gelatin and nano-scaled bioactive glass (45S5) is supposed to combine excellent cellular adhesion, proliferation and differentiation properties, good biocompatibility and predictable degradation rates. The goal of this study was to evaluate thein vitro and in vivo biocompatibility as a first step on the way to its use as a scaffold in bone tissue engineering. In vitro evaluation showed good cell adherence and proliferation of bone marrow derived mesenchymal stem cells seeded on covalently crosslinked alginate dialdehyde-gelatin (ADA-GEL) hydrogel films with and without 0.1% nano-Bioglass®(nBG). Lactate dehydrogenase (LDH)- and mitochondrial activity significantly increased in both ADA-GEL and ADA-GEL-nBG groups compared to alginate. However, addition of 0.1% nBG seemed to have slight cytotoxic effect compared to ADA-GEL. In vivo implantation did not produce a significant inflammatory reaction, and ongoing degradation could be seen after four weeks. Ongoing vascularization was detected after four weeks. The good biocompatibility encourages future studies using ADA-GEL and nBG for bone tissue engineering application.
In the context of bone tissue engineering (BTE), combinations of bioactive scaffolds with living cells are investigated to optimally yield functional bone tissue for implantation purposes. Bioactive glasses are a class of highly bioactive, inorganic materials with broad application potential in BTE strategies. The aim of this study was to evaluate bioactive glass (45S5 Bioglass(®)) samples of composition: 45 SiO2, 24.5 CaO, 24.5 Na2O, and 6 P2O5 (in wt%) as scaffold materials for mesenchymal stem cells (MSC). Pore architecture of the scaffolds as well as cell behavior in the three-dimensional environment was evaluated by several methods. Investigations concerned the osteogenic cell attachment, growth and differentiation of adipose tissue derived MSC (adMSC) compared with MSC from human full term umbilical cord tissues (ucMSC) on porous Bioglass(®)-based scaffolds over a cultivation period of 5 weeks. Differences in lineage-specific osteogenic differentiation of adMSC and ucMSC on Bioglass(®) samples were demonstrated. The investigation led to positive results in terms of cell attachment, proliferation, and differentiation of MSC onto Bioglass(®)-based scaffolds confirming the relevance of these matrices for BTE applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.