Transient rheological response of magnetoactive elastomers is experimentally studied using dynamic torsion at a fixed oscillation frequency in temporally stepwise changing magnetic fields and oscillation amplitudes. For step magnetic-field excitations, at least three exponential functions are required to reasonably describe the time behavior of the storage shear modulus over long time scales (>10(3) s). The deduced characteristic time constants of the corresponding rearrangement processes of the filler network differ approximately by one order of magnitude: τ1 ≲ 10(1) s, τ2 ∼ 10(2) s, and τ3 ∼ 10(3) s. The sudden imposition of the external magnetic field activates a very fast rearrangement process with the characteristic time under 10 s, which cannot be determined more precisely due to the measurement conditions. Even more peculiar transient behavior has been observed during pyramid excitations, when either the external magnetic field was first stepwise increased and then decreased in a staircase manner at a fixed strain amplitude γ or the strain amplitude γ was first stepwise increased and then decreased in a staircase manner at a fixed magnetic field. In particular, the so-called "cross-over effect" has been identified in both dynamical loading programs. This cross-over effect seems to be promoted by the application of the external magnetic field. The experimental results are discussed in the context of the specific rearrangement of the magnetic filler network under the simultaneous action of the external magnetic field and shear deformation. Striking similarities of the observed phenomena to the structural relaxation processes in glassy materials and to the jamming transition of granular materials are pointed out. The obtained results are important for fundamental understanding of material behavior in magnetic fields as well as for the development of devices on the basis of magnetoactive elastomeric materials.
The surface dilational modulus is a crucial parameter for describing the rheological properties of aqueous surfactant solutions. These properties are important for many technological processes. The present paper describes a fully automated instrument based on the oscillating bubble technique. It works in the frequency range from 1 Hz to 500 Hz, where surfactant exchange dynamics governs the relaxation process. The originality of instrument design is the consistent combination of modern measurement technologies with advanced imaging and signal processing algorithms. Key steps on the way to reliable and precise measurements are the excitation of harmonic oscillation of the bubble, phase sensitive evaluation of the pressure response, adjustment and maintenance of the bubble shape to half sphere geometry for compensation of thermal drifts, contour tracing of the bubbles video images, removal of noise and artefacts within the image for improving the reliability of the measurement, and, in particular, a complex trigger scheme for the measurement of the oscillation amplitude, which may vary with frequency as a result of resonances. The corresponding automation and programming tasks are described in detail. Various programming strategies, such as the use of MATLAB ® software and native C++ code are discussed. An advance in the measurement technique is demonstrated by a fully automated measurement. The instrument has the potential to mature into a standard technique in the fields of colloid and interface chemistry and provides a significant extension of the frequency range to established competing techniques and state-of-the-art devices based on the same measurement principle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.