Viburnum opulus (VO) is a valuable decorative, medicinal, and food plant. This deciduous shrub is found in natural habitats in Europe, Russia, and some regions in North Africa and North Asia. The VO is traditionally used to treat aliments such as cough, colds, tuberculosis, rheumatic aches, ulcers, stomach, and kidney problems, among others. Many of the health-promoting properties of VO are associated with antioxidant activity, which has been demonstrated in both in vitro and in vivo studies. The results of in vitro studies show the antimicrobial potential of VO, especially against Gram-positive bacteria. In cell-based studies, VO demonstrated anti-inflammatory, anti-obesity, anti-diabetic, osteogenic, cardio-protective, and cytoprotective properties. The applicability of VO in the treatment of urinary tract diseases, endometriosis, and some cancers has been confirmed in in vivo studies. The health benefits of VO result from the presence of bioactive components such as phenolic compounds, vitamin C, carotenoids, iridoids, and essential oils. The aim of this review is to present an overview of the botanical characteristics, chemical compositions, including bioactive compounds, and pro-health properties of VO different morphological parts.
Staphylococcus aureus is still one of the leading causes of both hospital- and community-acquired infections. Due to the very high percentage of drug-resistant strains, the participation of drug-tolerant biofilms in pathological changes, and thus the limited number of effective antibiotics, there is an urgent need to search for alternative methods of prevention or treatment for S. aureus infections. In the present study, biochemically characterized (HPLC/UPLC–QTOF–MS) acetonic, ethanolic, and water extracts from fruits and bark of Viburnum opulus L. were tested in vitro as diet additives that potentially prevent staphylococcal infections. The impacts of V. opulus extracts on sortase A (SrtA) activity (Fluorimetric Assay), staphylococcal protein A (SpA) expression (FITC-labelled specific antibodies), the lipid composition of bacterial cell membranes (LC-MS/MS, GC/MS), and biofilm formation (LIVE/DEAD BacLight) were assessed. The cytotoxicity of V. opulus extracts to the human fibroblast line HFF-1 was also tested (MTT reduction). V. opulus extracts strongly inhibited SrtA activity and SpA expression, caused modifications of S. aureus cell membrane, limited biofilm formation by staphylococci, and were non-cytotoxic. Therefore, they have pro-health potential. Nevertheless, their usefulness as diet supplements that are beneficial for the prevention of staphylococcal infections should be confirmed in animal models in the future.
Mosses are mainly the object of ecological and taxonomic research. This group of plants are still underestimated by scientists in other aspects of research. Recent research has shown that these plants contain remarkable and unique substances with high biological activity. Five species of mosses from a large urban ecosystem were identified for present study. In order to determine their biological potential, multifaceted studies were carried out, including: total phenolics content, antioxidant activity, antimicrobial and antifungal study, cytotoxicity evaluation, and scratch assay to assess pro-regenerative effect in the context of their possible use as the ingredients of biologically active cosmetics. Additionally, determination of individual phenolic compounds in selected extracts of the tested mosses was made. Research showed that Ceratodon purpureus and Dryptodon pulvinatus extracts had the greatest potential as antioxidants and antimicrobial activity. The cytotoxicity assessment indicated that the extracts from Dryptodon pulvinatus and Rhytidiadelphus squarossus exerted the strongest negative effect on mouse fibroblast line L929 viability at higher concentrations. While, the extract from Tortulla muralis best stimulated human foreskin fibroblast line HFF-1 proliferation and wound healing. The research on individual phenolic compounds content in the extracts tested indicated over 20 peaks on UPLC chromatograms. The conducted study has shown that mosses, especially so far unexplored species of open ecosystems, and e.g. epilytic habitats, may be a valuable source of biologically active substances and thus may constitute important medical and cosmetic possibilities.
Phytochemicals of various origins are of great interest for their antidiabetic potential. In the present study, the inhibitory effects against carbohydrate digestive enzymes and non-enzymatic glycation, antioxidant capacity, and phenolic compounds composition of Viburnum opulus L. fruits have been studied. Crude extract (CE), purified extract (PE), and ethyl acetate (PEAF) and water (PEWF) fractions of PE were used in enzymatic assays to evaluate their inhibitory potential against α-amylase with potato and rice starch as substrate, α-glucosidase using maltose and sucrose as substrate, the antioxidant capacity (ABTS, ORAC and FRAP assays), antiglycation (BSA-fructose and BSA-glucose model) properties. Among four tested samples, PEAF not only had the highest content of total phenolics, but also possessed the strongest α-glucosidase inhibition, antiglycation and antioxidant activities. UPLC analysis revealed that this fraction contained mainly chlorogenic acid, proanthocyanidin oligomers and flavalignans. Contrary, the anti-amylase activity of V. opulus fruits probably occurs due to the presence of proanthocyanidin polymers and chlorogenic acids, especially dicaffeoylquinic acids present in PEWF. All V. opulus samples have an uncompetitive and mixed type inhibition against α-amylase and α-glucosidase, respectively. Considering strong anti-glucosidase, antioxidant and antiglycation activities, V. opulus fruits may find promising applications in nutraceuticals and functional foods with antidiabetic activity.
The aim of the study was to analyze the polyphenolic profile of cone extracts of Douglas fir, Scots pine and Korean fir, and to study their antioxidant activity. The mechanism of electro-oxidation of polyphenols (such as procyanidins and catechins) from cone extracts was investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), as well as spectrophotometric methods—ABTS (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate)), DPPH (2,2-diphenyl-1-picrylhydrazyl), FRAP (Ferric Reducing Antioxidant Power ) and CUPRAC (CUPric Reducing Antioxidant Capacity). The scientific novelty of the research is the comprehensive analysis of cone extracts in terms of antioxidant properties. Due to the high polyphenol content, the extracts showed significant ability to reduce oxidative reactions, as well as the ability to scavenge free radicals and transition metal ions. Douglas fir, Scots pine and Korean fir cone extracts can potentially be used as natural stabilizers, preservatives and antimicrobial substances in the food industry and in medications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.