Four human Lactobacillus acidophilus strains were tested for their ability to adhere onto human enterocyte like Caco-2 cells in culture. The LA 1 strain exhibited a high calcium independent adhesive property. This adhesion onto Caco-2 cells required a proteinaceous adhesion promoting factor, which was present in the spent bacterial broth culture supernatant. LA 1 strain also strongly bound to the mucus secreted by the homogeneous cultured human goblet cell line HT29-MTX. The inhibitory effect of LA 1 organisms against Caco-2 cell adhesion and cell invasion by a large variety of diarrhoeagenic bacteria was investigated. As a result, the following dose dependent inhibitions were obtained: (a) against the cell association of enterotoxigenic, diffusely adhering and enteropathogenic Escherichia coli, and Salmonella typhimurium; (b) against the cell invasion by enteropathogenic Eschericha coli, Yersinia pseudotuberculosis, and Salmonella typhimurium. Incubations of L acidophilus LA 1 before and together with enterovirulent E coli were more effective than incubation after infection by E coli. (Gut 1994; 35: 483-489) Equipe de Pathogenie Microbienne Cellulaire et Moleculaire Intestinale,
AIM:To investigate the correlation between the in vitro immune profile of probiotic strains and their ability to prevent experimental colitis in mice. METHODS:In vitro immunomodulation was assessed by measuring interleukin (IL)-12p70, IL-10, tumor necrosis factor alpha (TNFa) and interferon g (IFNg) release by human peripheral blood mononuclear cells (PBMCs) after 24 h stimulation with 13 live bacterial strains. A murine model of acute TNBS-colitis was next used to evaluate the prophylactic protective capacity of the same set of strains. RESULTS:A strain-specific in vivo protection was observed. The strains displaying an in vitro capacity to induce higher levels of the anti-inflammatory cytokine IL-10 and lower levels of the inflammatory cytokine IL-12, offered the best protection in the in vivo colitis model. In contrast, strains leading to a low IL-10/IL-12 cytokine ratio could not significantly attenuate colitis symptoms. CONCLUSION:These results show that we could predict the in vivo protective capacity of the studied lactic acid bacteria (LAB) based on the cytokine profile we established in vitro . The PBMC-based assay we used may thus serve as a useful primary indicator to narrow down the number of candidate strains to be tested in murine models for their anti-inflammatory potential.
Background: Specific strains of Lactobacillus acidophilus are known to inhibit intestinal cell adhesion and invasion by enterovirulent bacteria. As L. acidophilus can survive transiently in the human stomach, it may downregulate Helicobacter pylori infection. Methods: The ability of L. acidophilus (johnsonii) La1 supernatant to interfere with H. pylori bacterial growth, urease activity, and adhesion to epithelial cells was tested in vitro. Its effect on H. pylori infection in volunteers was monitored in a randomized, double-blind, controlled clinical trial, using a drinkable, whey-based, La1 culture supernatant. H. pylori infected volunteers were treated 14 days with 50 ml of La1 supernatant four times a day combined with either omeprazole 20 mg four times a day or with placebo. Infection was assessed by breath test, endoscopy, and biopsy sampling, performed at inclusion, immediately at the end of the treatment (breath test only), and 4 weeks after the end of the treatment. Results: La1 supernatant inhibited H. pylori growth in vitro, regardless of previous binding of H. pylori to epithelial cells. In 20 subjects (8 females, 12 males, mean age 33.1 years) a marked decrease in breath test values was observed immediately after treatment with La1 supernatant, both in the omeprazole and in the placebo group (median 12.3 vs. 28.8 and 9.4 vs. 20.4, respectively; p < 0.03). In both treatment groups, breath test values remained low 6 weeks after treatment (omeprazole treated 19.2, placebo treated 8.3; p < 0.03 vs. pretreatment), but the persistence of H. pylori infection was confirmed in gastric biopsies. Conclusion: La1 culture supernatant shown to be effective in vitro has a partial, acid-independent long-term suppressive effect on H. pylori in humans.
Lactic acid bacteria in food can transiently colonize the intestine and exert beneficial effects (probiotic). Survival during intestinal transit or adhesion to epithelium or both seem to be important for modifying the host's immune reactivity. Because Lactobacillus acidophilus strain La1 is adherent to enterocytes in vitro, we hypothesize that contact with immune cells may occur in vivo. However, Bifidobacterium bifidum strain Bb12, which shows high fecal colonization, is another potential immunomodulator. Twenty-eight volunteers were divided into two groups and given a fermented product containing one of the two strains. Lymphocyte subsets and leukocyte phagocytic activity were studied in blood. No modifications were detected in lymphocyte subsets. In contrast, phagocytosis of Escherichia coli ssp. was enhanced in both groups (P < 0.001 for both). Bacterial adhesion to enterocytes, fecal colonization, or both seem to be valuable selection criteria for immunomodulation. Antiinfective mechanisms of defense can be enhanced after ingestion of specific lactic acid bacteria strains.
Thirteen human bifidobacterial strains were tested for their abilities to adhere to human enterocyte-like Caco-2 cells in culture. The adhering strains were also tested for binding to the mucus produced by the human mucus-secreting HT29-MTX cell line in culture. A high level of calcium-independent adherence was observed for Bifidobacterium breve 4, for Bifidobacterium infantis 1, and for three fresh human isolates from adults. As observed b3 scanning electron microscopy, adhesion occurs to the apical brush border of the enterocytic Caco-2 cells and to the mucus secreted by the HT29-MTfX mucus-secreting cells. The bacteria interacted with the well-defined apical microvilli of Caco-2 cells without cell damage. The adhesion to Caco-2 cells of bifidobacteria did not require calcium and was mediated by a proteinaceous adhesion-promoting factor which was present both in the bacterial whole cells and in the spent supernatant of bifidobacterium culture. This adhesion. promoting factor appeared species specific, as are the adhesion-promoting factors of lactobacilli. We investigated the inhibitory effect of adhering human bifidobacterial strains against intestinal cell monolayer colonization by a variety of diarrheagenic bacteria. B. breve 4, B. infantis 1, and fresh human isolates were shown to inhibit cell association of enterotoxigenic, enteropathogenic, diffusely adhering Escherichia coli and Salmonela typhimurium strains to enterocytic Caco-2 cells in a concentration-dependent manner. Moreover, B. breve 4 and B. infantis 1 strains inhibited, dose dependently, Caco-2 cell invasion by enteropathogenic E. coli, Yersinia pseudotuberculosis, and S. typhimurium strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.